Open Access
Issue |
BIO Web Conf.
Volume 177, 2025
14th International Symposium of Indonesian Society for Microbiology (ISISM 2024)
|
|
---|---|---|
Article Number | 03002 | |
Number of page(s) | 10 | |
Section | Fermentation and Functional Foods | |
DOI | https://doi.org/10.1051/bioconf/202517703002 | |
Published online | 22 May 2025 |
- Antimicrobial resistance, (n.d.). https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed September 15, 2024). [Google Scholar]
- F. Ferrara, T. Castagna, B. Pantolini, et al. The challenge of antimicrobial resistance (AMR): current status and future prospects, Naunyn-Schmiedeberg's Archives of Pharmacology (2024). https://doi.org/10.1007/s00210-024-03318-x. [Google Scholar]
- C.J.L. Murray, K.S. Ikuta, F. Sharara, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis, The Lancet 399 (2022) 629-655. https://doi.org/10.1016/S0140-6736(21)02724-0. [CrossRef] [Google Scholar]
- UNEP Report: Antimicrobial resistance: a global threat, (2024). https://www.unep.org/topics/chemicals-and-pollution-action/pollution-and-health/antimicrobial-resistance-global-threat (accessed September 15, 2024). [Google Scholar]
- European Commission: Health emergency preparedness and response authority., (2023). https://health.ec.europa.eu/publications/hera-factsheet-health-union-identifying-top-3-priority-health-threats_it (accessed September 15, 2024). [Google Scholar]
- WHO Bacterial Priority Pathogens List, 2024, 2024. [Google Scholar]
- J. Sun, S.T. Rutherford, T.J. Silhavy, et al. Physical properties of the bacterial outer membrane, Nature Reviews Microbiology 20 (2022) 236-248. https://doi.org/10.1038/s41579-021-00638-0. [CrossRef] [PubMed] [Google Scholar]
- L. Huang, C. Wu, H. Gao, et al. Bacterial Multidrug Efflux Pumps at the Frontline of Antimicrobial Resistance: An Overview, Antibiotics 11 (2022). https://doi.org/10.3390/antibiotics11040520. [Google Scholar]
- N. Noinaj, A.J. Kuszak, J.C. Gumbart, et al. Structural insight into the biogenesis of β-barrel membrane proteins, Nature 501 (2013) 385-390. https://doi.org/10.1038/nature12521. [CrossRef] [PubMed] [Google Scholar]
- H. Kaur, R.P. Jakob, J.K. Marzinek, et al. The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase, Nature 593 (2021) 125-129. https://doi.org/10.1038/s41586-021-03455-w. [CrossRef] [PubMed] [Google Scholar]
- R.D. Miller, A. Iinishi, S.M. Modaresi, et al. Computational identification of a systemic antibiotic for Gram-negative bacteria, Nature Microbiology 7 (2022) 1661-1672. https://doi.org/10.1038/s41564-022-01227-4. [CrossRef] [PubMed] [Google Scholar]
- L.R. Kjolbye, G.P. Pereira, A. Bartocci, et al. Towards design of drugs and delivery systems with the Martini coarse-grained model, QRB Discovery 3 (2022) e19. https://doi.org/DOI: 10.1017/qrd.2022.16. [CrossRef] [PubMed] [Google Scholar]
- K.M. Kuo, J. Liu, A. Pavlova, et al. Drug Binding to BamA Targets Its Lateral Gate, The Journal of Physical Chemistry B 127 (2023) 7509-7517. https://doi.org/10.1021/acs.jpcb.3c04501. [CrossRef] [PubMed] [Google Scholar]
- S.A. Hollingsworth, R.O. Dror, Molecular Dynamics Simulation for All, Neuron 99 (2018) 1129-1143. https://doi.org/10.1016/j.neuron.2018.08.011. [CrossRef] [PubMed] [Google Scholar]
- P.C.T. Souza, R. Alessandri, J. Barnoud, et al. Martini 3: a general purpose force field for coarse-grained molecular dynamics, Nature Methods 18 (2021) 382-388. https://doi.org/10.1038/s41592-021-01098-3. [CrossRef] [PubMed] [Google Scholar]
- W. Im, S. Khalid. Molecular simulations of gram-negative bacterial membranes come of age, Annual Review of Physical Chemistry 71 (2020) 171-188. https://doi.org/10.1146/annurev-physchem-103019-033434. [CrossRef] [PubMed] [Google Scholar]
- R. Vaiwala, K.G. Ayappa. Martini-3 Coarse-Grained Models for the Bacterial Lipopolysaccharide Outer Membrane of Escherichia coli, Journal of Chemical Theory and Computation 20 (2024) 1704-1716. https://doi.org/10.1021/acs.jctc.3c00471. [CrossRef] [PubMed] [Google Scholar]
- A.F. Brandner, D. Prakaash, A. Blanco Gonzalez, et al. Faster but Not Sweeter: A Model of Escherichia coli Re-level Lipopolysaccharide for Martini 3 and a Martini 2 Version with Accelerated Kinetics, Journal of Chemical Theory and Computation 20 (2024) 6890-6903. https://doi.org/10.1021/acs.jctc.4c00374. [CrossRef] [PubMed] [Google Scholar]
- L. Han, J. Zheng, Y. Wang, et al. Structure of the BAM complex and its implications for biogenesis of outer-membrane proteins, Nature Structural & Molecular Biology 23 (2016) 192-196. https://doi.org/10.1038/nsmb.3181. [CrossRef] [PubMed] [Google Scholar]
- J. Lee, D.S. Patel, J. Stahle, et al. CHARMM-GUI Membrane Builder for Complex Biological Membrane Simulations with Glycolipids and Lipoglycans, Journal of Chemical Theory and Computation 15 (2019) 775-786. https://doi.org/10.1021/acs.jctc.8b01066. [CrossRef] [PubMed] [Google Scholar]
- T.A. Wassenaar, H.I. Ingölfsson, R.A. Böckmann, et al. Computational Lipidomics with insane: A Versatile Tool for Generating Custom Membranes for Molecular Simulations, Journal of Chemical Theory and Computation 11 (2015) 2144-2155. https://doi.org/10.1021/acs.jctc.5b00209. [CrossRef] [PubMed] [Google Scholar]
- B. Hess, C. Kutzner, D. van der Spoel, et al. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation, Journal of Chemical Theory and Computation 4 (2008) 435-447. https://doi.org/10.1021/ct700301q. [CrossRef] [PubMed] [Google Scholar]
- P.C.T. Souza, R. Alessandri, J. Barnoud, et al. Martini 3: a general purpose force field for coarse-grained molecular dynamics, Nature Methods 18 (2021) 382-388. https://doi.org/10.1038/s41592-021-01098-3. [CrossRef] [PubMed] [Google Scholar]
- C. Sohlenkamp, I.M. Löpez-Lara, O. Geiger. Biosynthesis of phosphatidylcholine in bacteria, Progress in Lipid Research 42 (2003) 115-162. https://doi.org/10.1016/S0163-7827(02)00050-4. [CrossRef] [PubMed] [Google Scholar]
- S. Kim, D.S. Patel, S. Park, et al. Bilayer Properties of Lipid A from Various Gram-Negative Bacteria, Biophysical Journal 111 (2016) 1750-1760. https://doi.org/10.1016/j.bpj.2016.09.001. [CrossRef] [PubMed] [Google Scholar]
- Y. Lin, M. Bogdanov, S. Lu, et al. The phospholipid-repair system LplT/Aas in Gram-negative bacteria protects the bacterial membrane envelope from host phospholipase A2 attack, Journal of Biological Chemistry 293 (2018) 3386-3398. https://doi.org/10.1074/jbc.RA117.001231. [CrossRef] [Google Scholar]
- G.H.M. Huysmans, I. Guilvout, M. Chami, et al. Lipids assist the membrane insertion of a BAM-independent outer membrane protein, Scientific Reports 5 (2015) 15068. https://doi.org/10.1038/srep15068. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.