Open Access
Issue |
BIO Web Conf.
Volume 177, 2025
14th International Symposium of Indonesian Society for Microbiology (ISISM 2024)
|
|
---|---|---|
Article Number | 06002 | |
Number of page(s) | 11 | |
Section | Microbial Bioremediation and Environmental Microbiology | |
DOI | https://doi.org/10.1051/bioconf/202517706002 | |
Published online | 22 May 2025 |
- V.R. Cahyani, Rahayu, K.P. Lakshitarsari, R.A.Z.W. Megow, N.Y. Azzahra, Composting of Rice Straw-Based Materials using Aerobic Bioactivator Isolated from Rice Straw, Mahogany Bark and Cassava Peels. Caraka Tani: Journal of Sustainable Agriculture 39, 48-64 (2024). https://doi.org/10.20961/carakatani.v39i1.74297. [Google Scholar]
- H. Duan, M. Ji, A. Chen, B. Zhang, J. Shi, L. Liu, X. Li, J. Sun, Evaluating the impact of rice husk on successions of bacterial and fungal communities during cow manure composting. Environ Technol Innov 24, 102084 (2021). https://doi.org/10.1016/j.eti.2021.102084. [CrossRef] [Google Scholar]
- V.R. Cahyani, Kimura Makoto, Succession and phylogenetic composition of microbial communities responsible for the composting process of rice straw. In Joseph C. Pereira, and John L. Bolin (eds.), Composting : Processes, Materials and Approaches, Nova Science Publishers, 2009. [Google Scholar]
- J. Qu, L. Zhang, X. Zhang, L. Gao, Y. Tian, Biochar combined with gypsum reduces both nitrogen and carbon losses during agricultural waste composting and enhances overall compost quality by regulating microbial activities and functions. Bioresour Technol 314, 123781 (2020). https://doi.org/10.1016/j.biortech.2020.123781. [CrossRef] [PubMed] [Google Scholar]
- V.R. Cahyani, A. Watanabe, S. Asakawa, M. Kimura, K. Matsuya, Succession of microbiota estimated by phospholipid fatty acid analysis and changes in organic constituents during the composting process of rice straw. Soil Sci Plant Nutr 48, 735743 (2002). https://doi.org/10.1080/00380768.2002.10409264. [CrossRef] [Google Scholar]
- V.R. Cahyani, K. Matsuya, S. Asakawa, M. Kimura, Succession and phylogenetic composition of bacterial communities responsible for the composting process of rice straw estimated by PCR-DGGE analysis. Soil Sci and Plant Nutr 49, 619-630 (2003). https://doi.org/10.1080/00380768.2003.10410052. [CrossRef] [Google Scholar]
- M.D. Meena, P.K. Joshi, B. Narjary, P. Sheoran, H.S. Jat, A.R. Chinchmalatpure, R.K. Yadav, D.K. Sharma, Effects of municipal solid waste compost, rice-straw compost and mineral fertilisers on biological and chemical properties of a saline soil and yields in a mustard-pearl millet cropping system. Soil Research 54, 958 (2016). https://doi.org/10.1071/SR15342. [CrossRef] [Google Scholar]
- D. Liu, Z. Ding, E.F. Ali, A.M.S. Kheir, M.A. Eissa, O.H.M. Ibrahim, Biochar and compost enhance soil quality and growth of roselle (Hibiscus sabdariffa L.) under saline conditions. Sci Rep 11, 1-11 (2021). https://doi.org/10.1038/s41598-021-88293-6. [CrossRef] [PubMed] [Google Scholar]
- D. Wang, J.Y. Lin, J.M. Sayre, R. Schmidt, S.J. Fonte, J.L.M. Rodrigues, K.M. Scow, Compost amendment maintains soil structure and carbon storage by increasing available carbon and microbial biomass in agricultural soil - A six-year field study. Geoderma 427, 116117 (2022). https://doi.org/10.1016/j.geoderma.2022.116117. [CrossRef] [Google Scholar]
- S. Ye, G. Zeng, H. Wu, J. Liang, C. Zhang, J. Dai, W. Xiong, B. Song, S. Wu, J. Yu, The effects of activated biochar addition on remediation efficiency of co-composting with contaminated wetland soil. Resour Conserv Recycl 140, 278-285 (2019). https://doi.org/10.1016/j.resconrec.2018.10.004. [CrossRef] [Google Scholar]
- J. Tang, L. Zhang, J. Zhang, L. Ren, Y. Zhou, Y. Zheng, L. Luo, Y. Yang, H. Huang, A. Chen, Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost. Science of the Total Environment 701, 134751 (2020). https://doi.org/10.1016/j.scitotenv.2019.134751. [CrossRef] [Google Scholar]
- L.C. Ng, M. Sariah, O. Radziah, M.A. Zainal Abidin, O. Sariam, Development of Microbial-Fortified Rice Straw Compost to Improve Plant Growth, Productivity, Soil Health, and Rice Blast Disease Management of Aerobic Rice. Compost Sci Util 24, 86-97 (2016). https://doi.org/10.1080/1065657X.2015.1076750. [CrossRef] [Google Scholar]
- A.W. Karanja, E.M. Njeru, J.M. Maingi, Assessment of physicochemical changes during composting rice straw with chicken and donkey manure. International Journal of Recycling of Organic Waste in Agriculture 8, 65-72 (2019). https://doi.org/10.1007/s40093-019-0270-x. [CrossRef] [Google Scholar]
- Z. Demir, C. Gülser, Effects of rice husk compost application on soil quality parameters in greenhouse conditions. Eurasian Journal of Soil Science (Ejss) 4, 185 (2015). https://doi.org/10.18393/ejss.2015.3.185-190. [CrossRef] [Google Scholar]
- Y. yu Sui, X. guang Jiao, X. bing Liu, X. yi Zhang, G. wei Ding, Water-stable aggregates and their organic carbon distribution after five years of chemical fertilizer and manure treatments on eroded farmland of Chinese Mollisols. Can J Soil Sci 92, 551-557 (2012). https://doi.org/10.4141/CJSS2010-005. [CrossRef] [Google Scholar]
- C. Saison, V. Degrange, R. Oliver, P. Millard, C. Commeaux, D. Montange, X. Le Roux, Alteration and resilience of the soil microbial community following compost amendment: Effects of compost level and compost-borne microbial community. Environ Microbiol 8, 247-257 (2006). https://doi.org/10.1111/j.1462-2920.2005.00892.x. [CrossRef] [PubMed] [Google Scholar]
- J. Sidhu, R.A. Gibbs, G.E. Ho, I. Unkovich, The role of indigenous microorganisms in suppression of Salmonella regrowth in composted biosolids. Water Res 35, 913—920 (2001). https://doi.org/10.1016/S0043-1354(00)00352-3. [CrossRef] [PubMed] [Google Scholar]
- M. Dharmasena, X. Jiang, Improving culture media for the isolation of Clostridium difficile from compost. Anaerobe 51, 1—7 (2018). https://doi.org/10.1016/j.anaerobe.2018.03.002. [CrossRef] [PubMed] [Google Scholar]
- Madhu Choudhary, Savita Kajal, H. Jat, Effect of Steam Sterilization on Soil Biological and Chemical Properties. Journal of Soil Salinity and Water Quality 14, 93—97 (2022). [Google Scholar]
- I. Vishan, S. Sivaprakasam, A. Kalamdhad, Isolation and identification of bacteria from rotary drum compost of water hyacinth. International Journal of Recycling of Organic Waste in Agriculture 6, 245—253 (2017). https://doi.org/10.1007/s40093-017-0172-8. [CrossRef] [Google Scholar]
- B.T. dan Pupuk, Analisis Kimia Tanah, Tanaman, Air, Dan Pupuk, Kementerian Pertanian Republik Indonesia, 2023. [Google Scholar]
- G. Wang, Y. Kong, H. Tang, G. Li, J. Yuan, Multi-omics insights into the vital role of thermophilic phase on compost maturity. J Clean Prod 482, 144195 (2024). https://doi.org/10.1016/j.jclepro.2024.144195. [CrossRef] [Google Scholar]
- S. Darbar, A. Lakzian, Evaluation of chemical and biological consequences of soil sterilization methods. 5, 87—91 (2007). [Google Scholar]
- P. Dietrich, S. Cesarz, N. Eisenhauer, C. Roscher, Effects of steam sterilization on soil abiotic and biotic properties. Soil Org 92, 99—108 (2020). https://doi.org/10.25674/so92iss2pp99. [Google Scholar]
- H. Schulz, G. Dunst, B. Glaser, Positive effects of composted biochar on plant growth and soil fertility. Agron Sustain Dev 33, 817—827 (2013). https://doi.org/10.1007/s13593-013-0150-0. [CrossRef] [Google Scholar]
- F. Steiner, L. Freitas Marques de Queiroz, A. Mario Zuffo, K. Cristina da Silva, I. Machado de Oliveira Lima, C. Fâbio Steiner, Peanut response to co-inoculation of Bradyrhizobium spp. and Azospirillum brasilense and molybdenum application in sandy soil of the Brazilian Cerrado. (n.d.). https://doi.org/10.1002/its2.20519. [Google Scholar]
- S. Masmoudi, S. Magdich, H. Rigane, K. Medhioub, A. Rebai, E. Ammar, Effects of Compost and Manure Application Rate on the Soil Physico-Chemical Layers Properties and Plant Productivity. Waste Biomass Valorization 11, 1883—1894 (2020). https://doi.org/10.1007/s12649-018-0543-z. [CrossRef] [Google Scholar]
- M. Annabi, Y. Le Bissonnais, M. Le Villio-Poitrenaud, S. Houot, Improvement of soil aggregate stability by repeated applications of organic amendments to a cultivated silty loam soil. Agric Ecosyst Environ 144, 382—389 (2011). https://doi.org/10.1016/j.agee.2011.07.005. [CrossRef] [Google Scholar]
- M. Zaccardelli, F. De Nicola, D. Villecco, R. Scotti, The development and suppressive activity of soil microbial communities under compost amendment. J Soil Sci Plant Nutr 13, 730—742 (2013). https://doi.org/10.4067/S0718-95162013005000058. [Google Scholar]
- M. Yu, W. Xie, X. Zhang, S. Zhang, Y. Wang, Z. Hao, Arbuscular Mycorrhizal Fungi Can Compensate for the Loss of Indigenous Microbial Communities to Support the Growth of Liquorice (Glycyrrhiza uralensis Fisch.).pdf. Plants 1—17 (2020). [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.