Open Access
Issue |
BIO Web Conf.
Volume 177, 2025
14th International Symposium of Indonesian Society for Microbiology (ISISM 2024)
|
|
---|---|---|
Article Number | 06001 | |
Number of page(s) | 15 | |
Section | Microbial Bioremediation and Environmental Microbiology | |
DOI | https://doi.org/10.1051/bioconf/202517706001 | |
Published online | 22 May 2025 |
- O. Dagdag, T.W. Quadri, R. Haldhar, S.-C. Kim, W. Daoudi, E. Berdimurodov, E.D. Akpan, E.E. Ebenso, "An overview of heavy metal pollution and control," in Heavy metals in the environment: Management strategies for global pollution, edited by D.K. Verma, C. Verma, P. K. Mahish (American Chemical Society, Washington, DC, 2023), Vol. 1456, pp. 3. [Google Scholar]
- G. Yan, Y. Gao, K. Xue, Y. Qi, Y. Fan, X. Tian, J. Wang, R. Zhao, P. Zhang, Y. Liu, J. Liu, Toxicity mechanisms and remediation strategies for chromium exposure in the environment. Front. Environ. Sci. 11, 1131204 (2023). https://doi.org/10.3389/fenvs.2023.1131204 [CrossRef] [Google Scholar]
- Y. Deng, M. Wang, T. Tian, S. Lin, P. Xu, L. Zhou, C. Dai, Q. Hao, Y. Wu, Z. Zhai, Y. Zhu, G. Zhuang, Z. Dai, The effect of hexavalent chromium on the incidence and mortality of human cancers : A meta-analysis based on published epidemiological cohort studies. Front. Oncol. 9, 24 (2019). https://doi.org/10.3389/fonc.2019.00024 [CrossRef] [Google Scholar]
- S. Mishra, R.N. Bharagava, Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. J. Environ. Sci. Health Part C. 34, 1 (2016). https://doi.org/10.1080/10590501.2015.1096883 [CrossRef] [PubMed] [Google Scholar]
- M. Tumolo, V. Ancona, D. De Paola, D. Losacco, C. Campanale, C. Massarelli, V.F. Uricchio, Chromium pollution in european water, sources, health risk, and remediation strategies: An overview. Int. J. Environ. Res. Public. Health. 17, 5428 (2020). https://doi.org/10.3390/iierph17155438 [CrossRef] [Google Scholar]
- J.P. Wise, J.L. Young, J. Cai, L. Cai, Current understanding of hexavalent chromium [Cr(VI)] neurotoxicity and new perspectives. Environ. Int. 158, 106877 (2022). https://doi.org/10.1016/i.envint.2021.106877 [CrossRef] [Google Scholar]
- S. Acharyya, A. Das, T.P. Thaker, Remediation processes of hexavalent chromium from groundwater: A short review. AQUA Water Infrastruct. Ecosyst. Soc. 72, 648 (2023). https://doi.org/10.2166/aqua.2023.123 [CrossRef] [Google Scholar]
- P. Sharma, S.P. Singh, S.K. Parakh, Y.W. Tong, Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction. Bioengineered. 13, 4923 (2022). https://doi.org/10.1080/21655979.2022.2037273 [CrossRef] [PubMed] [Google Scholar]
- J.J. Coetzee, N. Bansal, E.M.N. Chirwa, chromium in environment, its toxic effect from chromite-mining and ferrochrome industries, and its possible bioremediation. Expo. Health. 12, 51 (2020). https://doi.org/10.1007/s12403-018-0284-z [CrossRef] [Google Scholar]
- R. Achmad, Budiawan, E. Auerkari, Effects of chromium on human body. Annu. Res. Rev. Biol. 13, 1 (2017). https://doi.org/10.9734/ARRB/2017/33462 [CrossRef] [Google Scholar]
- S. Mohanty, A. Benya, S. Hota, M.S. Kumar, S. Singh, Eco-toxicity of hexavalent chromium and its adverse impact on environment and human health in Sukinda Valley of India: A review on pollution and prevention strategies. Environ. Chem. Ecotoxicol. 5, 46 (2023). https://doi.org/10.1016/j.enceco.2023.01.002 [CrossRef] [Google Scholar]
- A. Ayele, Y.G. Godeto, Bioremediation of chromium by microorganisms and its mechanisms related to functional groups. J. Chem. 2021, 7694157 (2021). https://doi.org/10.1155/2021/7694157 [Google Scholar]
- B. Pushkar, P. Sevak, S. Parab, N. Nilkanth, Chromium pollution and its bioremediation mechanisms in bacteria: A review. J. Environ. Manage. 287, 112279 (2021). https://doi.org/10.1016/i.ienvman.2021.112279 [CrossRef] [Google Scholar]
- N. Al-Kaabi, Z.A. Disi, M.A. Al-Ghouti, T.I. Solling, N. Zouari, Interaction between indigenous hydrocarbon-degrading bacteria in reconstituted mixtures for remediation of weathered oil in soil. Biotechnol. Rep. 36, e00767 (2022). https://doi.org/10.1016/i.btre.2022.e00767 [Google Scholar]
- S. Padma, B. Srinivas, K.C. Ghanta, S. Dutta, Bioremediation of Cr(VI) using indigenous bacterial strains isolated from a common industrial effluent treatment plant in Vishakhapatnam. Water Sci. Technol. 88, 2889 (2023). https://doi.org/10.2166/wst.2023.358 [CrossRef] [PubMed] [Google Scholar]
- R.D.P. Astuti, A. Mallongi, R. Amiruddin, M. Hatta, A.U. Rauf, Hexavalent chromium contamination in groundwater and its implication to human health: A Monte Carlo model approach in Indonesia. Sustain. Water Resour. Manag. 9, 22 (2023). https://doi.org/10.1007/s40899-022-00806-x [CrossRef] [Google Scholar]
- I.F. Purwanti, T.P. Putri, S.B. Kurniawan, Treatment of chromium contaminated soil using bioremediation. AIP Conf. Proc. 1903, 040008 (2017). https://doi.org/10.1063/L5011527 [CrossRef] [Google Scholar]
- N. Nancy, Potential distortion of sustainable development in the conflict of interest of nickel mining and indigenous communities in Halmahera, North Maluku. J. Glob. Environ. Dyn. 3, 11 (2022). [Google Scholar]
- P.R. Secor, L.A. Michaels, D.C. Bublitz, L.K. Jennings, P.K. Singh, The depletion mechanism actuates bacterial aggregation by exopolysaccharides and determines species distribution & composition in bacterial aggregates. Front. Cell. Infect. Microbiol. 12, 869736 (2022). https://doi.org/10.3389/fcimb.2022.869736 [CrossRef] [Google Scholar]
- Á.T. Kovâcs, Colony morphotype diversification as a signature of bacterial evolution. microLife. 4, uqad041 (2023). https://doi.org/10.1093/femsml/uqad041 [Google Scholar]
- L. Karygianni, Z. Ren, H. Koo, T. Thurnheer, Biofilm matrixome: Extracellular components in structured microbial communities. Trends Microbiol. 28, 668 (2020). https://doi.org/10.1016/i.tim.2020.03.016 [CrossRef] [Google Scholar]
- O.A. McCrate, X. Zhou, C. Reichhardt, L. Cegelski, Sum of the parts: Composition and architecture of the bacterial extracellular matrix. J. Mol. Biol. 425, 4286 (2013). https://doi.org/10.1016/i.imb.2013.06.022 [CrossRef] [Google Scholar]
- E.C.L.D. Santos, D.A.D.R. Miranda, A.L.D.S. Silva, A.M.Q. Lopez, Biosurfactant Production by Bacillus strains isolated from sugar cane mill wastewaters. Braz. Arch. Biol. Technol. 62, e19170630 (2019). https://doi.org/10.1590/1678-4324-2019170630 [Google Scholar]
- J. Sharma, D. Sundar, P. Srivastava, Biosurfactants: Potential agents for controlling cellular communication, motility, and antagonism. Front. Mol. Biosci. 8, 727070 (2021). https://doi.org/10.3389/fmolb.2021.727070 [CrossRef] [Google Scholar]
- S. Trinschek, K. John, U. Thiele, Modelling of surfactant-driven front instabilities in spreading bacterial colonies. Soft Matter. 14, 4464 (2018). https://doi.org/10.1039/C8SM00422F [CrossRef] [PubMed] [Google Scholar]
- I.A. Phulpoto, Z. Qi, M.A. Qazi, Z. Yu, Biosurfactants-based mixed polycyclic aromatic hydrocarbon degradation: From microbial community structure toward non-targeted metabolomic profile determination. Environ. Int. 184, 108448 (2024). https://doi.org/10.1016/j.envint.2024.108448 [CrossRef] [Google Scholar]
- R. Koshti, A. Jagtap, D. Noronha, S. Patkar, J. Nazareth, R. Paulose, A. Chakraborty, P. Chakraborty, Evaluation of antioxidant potential and UV protective properties of four bacterial pigments. Microbiol. Biotechnol. Lett. 50, 375 (2022). https://doi.org/10.48022/mbl.2205.05010 [CrossRef] [Google Scholar]
- D. Mohana, S. Thippeswamy, R. Abhishek, Antioxidant, antibacterial, and ultraviolet-protective properties of carotenoids isolated from Micrococcus spp. Radiat. Prot. Environ. 36, 168 (2013). https://doi.org/10.4103/0972-0464.142394 [Google Scholar]
- J.M. Patki, S. Singh, S. Singh, N. Padmadas, D. Dasgupta, Analysis of the applicative potential of pigments extracted from bacterial isolates of mangrove soil as topical UV protectants. Braz. J. Pharm. Sci. 57, e19127 (2021). https://doi.org/10.1590/s2175-97902020000419127 [Google Scholar]
- G.A. Hedblom, H.A. Reiland, M.J. Sylte, T.J. Johnson, D.J. Baumker, Segmented filamentous bacteria - Metabolism meets immunity. Front. Microbiol. 9, 1991 (2018). https://doi.org/10.3389/fmicb.2018.01991 [CrossRef] [Google Scholar]
- A. Herrero, A.M. Muro-Pastor, A. Valladares, E. Flores, Cellular differentiation and the NtcA transcription factor in filamentous cyanobacteria. FEMS Microbiol. Rev. 28, 469 (2004). https://doi.org/10.1016/j.femsre.2004.04.003 [CrossRef] [Google Scholar]
- J.C. Meeks, J. Elhai, Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiology and Molecular Biology Reviews. 66, 94 (2002). https://doi.org/10.1128/MMBR.66.L94-121.2002 [CrossRef] [PubMed] [Google Scholar]
- K.D. Young, The selective value of bacterial shape. Microbiol. Mol. Biol. Rev. 70, 660 (2006). https://doi.org/10.1128/MMBR.00001-06 [CrossRef] [PubMed] [Google Scholar]
- M.H. Muhammad, A.L. Idris, X. Fan, Y. Guo, Y. Yu, X. Jin, J. Qiu, X. Guan, T. Huang, Beyond risk: Bacterial biofilms and their regulating approaches. Front. Microbiol. 11, 928 (2020). https://doi.org/10.3389/fmicb.2020.00928 [CrossRef] [Google Scholar]
- S. Zheng, M. Bawazir, A. Dhall, H.-E. Kim, L. He, J. Heo, G. Hwang, Implication of surface properties, bacterial motility, and hydrodynamic conditions on bacterial surface sensing and their initial adhesion. Front. Bioeng. Biotechnol. 9, 643722 (2021). https://doi.org/10.3389/fbioe.2021.643722 [CrossRef] [Google Scholar]
- N. Ojkic, D. Serbanescu, S. Banerjee, Surface-to-volume scaling and aspect ratio preservation in rod-shaped bacteria. eLife. 8, e47033 (2019). https://doi.org/10.7554/eLife.47033 [Google Scholar]
- R. Colin, B. Ni, L. Laganenka, V. Sourjik, Multiple functions of flagellar motility and chemotaxis in bacterial physiology. FEMS Microbiol. Rev. 45, fuab038 (2021). https://doi.org/10.1093/femsre/fuab038 [Google Scholar]
- S.B. Guttenplan, D.B. Kearns, Regulation of flagellar motility during biofilm formation. FEMS Microbiol. Rev. 37, 849 (2013). https://doi.org/10.1111/1574-6976.12018 [CrossRef] [Google Scholar]
- L. Hobley, C. Harkins, C.E. MacPhee, N.R. Stanley-Wall, Giving structure to the biofilm matrix: An overview of individual strategies and emerging common themes. FEMS Microbiol. Rev. 39, 649 (2015). https://doi.org/10.1093/femsre/fuv015 [CrossRef] [Google Scholar]
- W. Vollmer, D. Blanot, M.A. De Pedro, Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 32, 149 (2008). https://doi.org/10.1111/j.1574-6976.2007.00094.x [CrossRef] [Google Scholar]
- A. Ebbensgaard, H. Mordhorst, F.M. Aarestrup, E.B. Hansen, The role of outer membrane proteins and lipopolysaccharides for the sensitivity of Escherichia coli to antimicrobial peptides. Front. Microbiol. 9, 2153 (2018). https://doi.org/10.3389/fmicb.2018.02153 [CrossRef] [Google Scholar]
- J. Wang, W. Ma, Y. Fang, H. Liang, H. Yang, Y. Wang, X. Dong, Y. Zhan, X. Wang, Core oligosaccharide portion of lipopolysaccharide plays important roles in multiple antibiotic resistance in Escherichia coli. Antimicrob. Agents Chemother. 65, e00341 (2021). https://doi.org/10.1128/AAC.00341-21 [Google Scholar]
- D. Drzewiecka, Significance and roles of Proteus spp. bacteria in natural environments. Microb. Ecol. 72, 741 (2016). https://doi.org/10.1007/s00248-015-0720-6 [CrossRef] [PubMed] [Google Scholar]
- R.P. Ryan, S. Monchy, M. Cardinale, S. Taghavi, L. Crossman, M.B. Avison, G. Berg, D. Van Der Lelie, J.M. Dow, The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat. Rev. Microbiol. 7, 514 (2009). https://doi.org/10.1038/nrmicro2163 [CrossRef] [PubMed] [Google Scholar]
- A.M. Walterson, J. Stavrinides, Pantoea: insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol. Rev. 39, 968 (2015). https://doi.org/10.1093/femsre/fuv027 [CrossRef] [Google Scholar]
- M. Wröbel, W. Sliwakowski, P. Kowalczyk, K. Kramkowski, J. Dobrzyhski, Bioremediation of heavy metals by the genus Bacillus. Int. J. Environ. Res. Public. Health. 20, 4964 (2023). https://doi.org/10.3390/iierph20064964 [CrossRef] [Google Scholar]
- A.F. Abdulmalik, H.M. Yakasai, S. Usman, J.B. Muhammad, A.H. Jagaba, S. Ibrahim, A. Babandi, M.Y. Shukor, Characterization and invitro toxicity assay of bio-reduced hexavalent chromium by Acinetobacter sp. isolated from tannery effluent. Case Stud. Chem. Environ. Eng. 8, 100459 (2023). https://doi.org/10.1016/i.cscee.2023.100459 [CrossRef] [Google Scholar]
- Z. Chromikovâ, R.K. Chovanovâ, D. Tamindzija, B. Bârtovâ, D. Radnovic, R. Bernier-Latmani, I. Barâk, Implantation of Bacillus pseudomycoides chromate transporter increases chromate tolerance in Bacillus subtilis. Front. Microbiol. 13, 842623 (2022). https://doi.org/10.3389/fmicb.2022.842623 [CrossRef] [Google Scholar]
- N.N. Ramli, A.R. Othman, S.B. Kurniawan, S.R.S. Abdullah, H.A. Hasan, Metabolic pathway of Cr(VI) reduction by bacteria: A review. Microbiol. Res. 268, 127288 (2023). https://doi.org/10.1016/i.micres.2022.127288 [CrossRef] [Google Scholar]
- E. Plestenjak, B. Kraigher, S. Leskovec, I. Mandic Mulec, S. Markovic, J. Scancar, R. Milacic, Reduction of hexavalent chromium using bacterial isolates and a microbial community enriched from tannery effluent. Sci. Rep. 12, 20197 (2022). https://doi.org/10.1038/s41598-022-24797-z [CrossRef] [Google Scholar]
- N. Upadhyay, K. Vishwakarma, J. Singh, M. Mishra, V. Kumar, R. Rani, R.K. Mishra, D.K. Chauhan, D.K. Tripathi, S. Sharma, Tolerance and reduction of chromium(VI) by Bacillus sp. MNU16 isolated from contaminated coal mining soil. Front. Plant Sci. 8, 778 (2017). https://doi.org/10.3389/fpls.2017.00778 [CrossRef] [Google Scholar]
- F.Z. Aliyat, M. Maldani, M. El Guilli, L. Nassiri, J. Ibijbijen, Phosphate-solubilizing bacteria isolated from phosphate solid sludge and their ability to solubilize three inorganic phosphate forms: Calcium, iron, and aluminum phosphates. Microorganisms. 10, 980 (2022). https://doi.org/10.3390/microorganisms10050980 [CrossRef] [Google Scholar]
- L. Pan, B. Cai, Phosphate-solubilizing bacteria: Advances in their physiology, molecular mechanisms and microbial community effects. Microorganisms. 11, 2904 (2023). https://doi.org/10.3390/microorganisms11122904 [CrossRef] [Google Scholar]
- L. Guo, C. Wang, R.F. Shen, Stronger effects of maize rhizosphere than phosphorus fertilization on phosphatase activity and phosphorus-mineralizing-related bacteria in acidic soils. Rhizosphere. 23, 100555 (2022). https://doi.org/10.1016/i.rhisph.2022.100555 [CrossRef] [Google Scholar]
- E.A.P. Teles, J.F. Xavier, F.S. Arcênio, R.L. Amaya, J.V.S. Gonçalves, L.F.M. Rouws, E. Zonta, I.S. Coelho, Characterization and evaluation of potential halotolerant phosphate solubilizing bacteria from Salicornia fruticosa rhizosphere. Front. Plant Sci. 14, 1324056 (2024). https://doi.org/10.3389/fpls.2023.1324056 [CrossRef] [Google Scholar]
- J. Montreemuk, T.N. Stewart, B. Prapagdee, Bacterial-assisted phytoremediation of heavy metals: Concepts, current knowledge, and future directions. Environ. Technol. Innov. 33, 103488 (2024). https://doi.org/10.1016/i.eti.2023.103488 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.