Open Access
Issue |
BIO Web Conf.
Volume 178, 2025
International Conference on the Future of Food Science & Technology: Innovations, Sustainability and Health (8th AMIFOST 2025)
|
|
---|---|---|
Article Number | 01002 | |
Number of page(s) | 7 | |
Section | Sustainable Food Systems, Food Production & Food Security | |
DOI | https://doi.org/10.1051/bioconf/202517801002 | |
Published online | 03 June 2025 |
- A.J. Challinor, J. Watson, D.B. Lobell, S.M. Howden, D.R. Smith, N. Chhetri, A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Chang. 4, 287–291 (2014). [CrossRef] [Google Scholar]
- T. Wheeler, J. von Braun, Climate change impacts on global food security. Science 341, 508–513 (2013). [CrossRef] [PubMed] [Google Scholar]
- S.S. Myers, A. Zanobetti, I. Kloog, P. Huybers, A.D.B. Leakey, A.J. Bloom, J. Schwartz, Increasing CO? threatens human nutrition. Nature 510, 139–142 (2014). [CrossRef] [PubMed] [Google Scholar]
- M.A. O’Neill, A. Kumar, Heat stress impacts on wheat: Physiological responses and yield implications. Crop Sci. 57, 1323–1335 (2017). [Google Scholar]
- A. Raza, A. Razzaq, S. Mehmood, A. Muhammad, M. Ramzan, M. Hussain, Effects of climate change on crop productivity in Asia. Agric. Syst. 173, 126–136 (2019). [Google Scholar]
- W. Schlenker, M.J. Roberts, Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl. Acad. Sci. USA 106, 15594–15598 (2009). [CrossRef] [PubMed] [Google Scholar]
- D.B. Lobell, W. Schlenker, J. Costa-Roberts, Climate trends and global crop production since 1980. Science 333, 616–620 (2011). [CrossRef] [PubMed] [Google Scholar]
- C. Zhao, B. Liu, S. Piao, X. Wang, D.B. Lobell, Y. Huang, et al., Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 114, 9326–9331 (2017). [CrossRef] [PubMed] [Google Scholar]
- J.L. Hatfield, K.J. Boote, B.A. Kimball, R.C. Izaurralde, D.R. Ort, A.M. Thomson, et al., Climateimpacts on agriculture: Implications for crop production. Agron. J. 103, 351–370 (2011). [CrossRef] [Google Scholar]
- NHB. National Horticulture Board Government of India. https://nhb.gov.in (Accessed 17 Apr. 2025). [Google Scholar]
- G.-Y. Niu, X. Liang, H.-S. Li, X.-P. Zhou, Temperature effects on photosynthetic enzymes in crops. Plant Sci. 280, 44–52 (2019). [Google Scholar]
- A. Pareek, A. Bohra, S. Singh, Heat stress and its impact on enzyme activities in crop plants. J. Plant Physiol. 198, 12–20 (2016). [Google Scholar]
- M. Thakur & T. Belwal. Advances in Postharvest and Analytical Technology of Horticulture Crops. Springer, Singapore (2024). https://doi.org/10.1007/978-981-97-7247-61. [Google Scholar]
- B. Singh, B.S. Dhillon, Breeding strategies to mitigate the impact of climate change on crop production. Plant Breed. 138, 1–17 (2019). [CrossRef] [Google Scholar]
- S. Hussain, M. Ahmad, M. Farooq, A. Wahid, K.H.M. Siddique, Heat stress and its effects on crop growth and productivity. Environ. Exp. Bot. 157, 106–116 (2019). [Google Scholar]
- W.P. Falcon, M.A. Paulsen, Impact of heat stress on grain quality in maize. Field Crops Res. 192, 142–148 (2016). [Google Scholar]
- M. Tester, P. Langridge, Breeding for crop resilience under changing climates. Science 327, 818–822 (2010). [CrossRef] [PubMed] [Google Scholar]
- C. Zhu, P.A. Ingram, M. Benmoussa, S. Fukai, Improving photosynthetic efficiency for sustainable crop production. Trends Plant Sci. 15, 58–65 (2010). [Google Scholar]
- J. Kim, S. Naz, Heat stress and its management in cereal crops. J. Agric. Sci. 10, 78–90 (2018). [Google Scholar]
- R.K. Sinha, M. Ashraf, Heat stress and crop yield: Molecular mechanisms and adaptation strategies. Front. Plant Sci. 9, 1775 (2018). [CrossRef] [Google Scholar]
- A.J. Sutton, J. Morgaine, Evaluating crop simulation models: Implications for predicting yield under heat stress. Eur. J. Agron. 74, 144–150 (2016). [CrossRef] [Google Scholar]
- S. Asseng, F. Ewert, P. Martre, R.P. Rötter, D.B. Lobell, D. Cammarano, B.A. Kimball, Rising temperatures reduce global wheat production. Nat. Clim. Chang. 5, 143–147 (2015). [CrossRef] [Google Scholar]
- J. Bailey-Serres, J.E. Parker, E.A. Ainsworth, G.E.D. Oldroyd, J.I. Schroeder, Genetic strategies for improving crop yields. Nature 575, 109–118 (2019). [CrossRef] [PubMed] [Google Scholar]
- C. Ma, P. Wang, Y. Liang, Z. Xia, X. Li, B. Yao, Improving heat tolerance of rice: Key genetic factors and opportunities for breeding. Theor. Appl. Genet. 133, 1713–1728 (2020). [Google Scholar]
- A. Sharma, P. Kumar, Heat-induced alterations in crop physiology: A review. Plant Growth Regul. 85, 283–298 (2018). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.