Open Access
Issue |
BIO Web Conf.
Volume 179, 2025
International Scientific and Practical Conference “From Modernization to Rapid Development: Ensuring Competitiveness and Scientific Leadership of the Agro-Industrial Complex” (IDSISA 2025)
|
|
---|---|---|
Article Number | 03002 | |
Number of page(s) | 14 | |
Section | Current Issues in Veterinary Medicine | |
DOI | https://doi.org/10.1051/bioconf/202517903002 | |
Published online | 09 June 2025 |
- Yu.A. Stolpovsky, S.V. Beketov, E.V. Solodneva, B.M. Absalikov, A.S. Abdelmanova, E.A. Gladyr, N.A. Zinovieva, Genetic structure of native Tagil cattle by STR and SNP markers, Agricultural biology, 56(6), 1123-1133 (2021). DOI 10.15389/agrobiology.2021.6.1123rus. [Google Scholar]
- S.L. Gridina, Increasing the genetic potential of Ural Black Pied cattle productivity. Abstract of the dissertation for the degree of Doctor of Agricultural Sciences (St. Petersburg-Pushkin, 2006) 40. Dissertation of the All-Russian Scientific Research Institute of Genetics and Breeding of Farm Animals (SSI VNIIRGZH), 2006. [Google Scholar]
- O.I. Leshonok, I.V. Tkachenko, M.Yu. Sevostyanov, et al., Breeding work with dairy cattle in the Ural region in 2022, Ural Federal Agrarian Research Center of the Ural Branch of the Russian Academy of Sciences (Yekaterinburg: Raritet LLC, 2023) 120. ISBN. [Google Scholar]
- URL: https://www.uralplem.ru/rists/porodnaya-inventarizatsiya/573-metodicheskie- rekomendatsii-po-provedeniyu-porodnoj-inventarizatsii-plemennogo-pogolovya- krupnogo-rogatogo-skota-molochnogo-napravleniya-produktivnosti (Accessed 22.06.2024) [Google Scholar]
- M.V. Modorov, I.V. Tkachenko, A.A. Green, M.Yu. Sevostyanov, N.N. Zezin, Population genetic structure of Ural Black Pied cattle, Rus J. Genet, 57(4), 453-459 (2021). DOI 10.1134/S1022795421040104. [CrossRef] [Google Scholar]
- S. Wilkinson, P. Wiener, A.L. Archibald, A. Law, R.D. Schnabel, S.D. McKay, J.F. Taylor, R. Ogden, Evaluation of approaches for identifying population informative markers from high density SNP chips, BMC Genet, 12, 45 (2011). DOI 10.1186/1471- 2156-12-45 [CrossRef] [Google Scholar]
- S. Dash, A. Singh, A.K. Bhatia, S. Jayakumar, A. Sharma, S. Singh, I. Ganguly, S.P. Dixit, Evaluation of Bovine High-Density SNP Genotyping Array in Indigenous Dairy Cattle Breeds, Anim Biotechnol., 29(2), 129-135 (2018). DOI 10.1080/10495398.2017.1329150 [CrossRef] [PubMed] [Google Scholar]
- R. Negrini, L. Nicoloso, P. Crepaldi, E. Milanesi, L. Colli, F. Chegdani, L. Pariset, S. Dunner, H. Leveziel, J.L. Williams, P. Ajmone Marsan, Assessing SNP markers for assigning individuals to cattle populations, Anim Genet., 40(1), 18-26 (2009). DOI 10.1111/j.1365-2052.2008.01800.x [CrossRef] [PubMed] [Google Scholar]
- J.E. Decker, S.D. McKay, M.M. Rolf, J. Kim, A. Molina Alcalá, T.S. Sonstegard, O. Hanotte, A. Götherström, C.M. Seabury, L. Praharani, M.E. Babar, L. Correia de Almeida Regitano, M.A. Yildiz, M.P. Heaton, W.S. Liu, C.Z. Lei, J.M. Reecy, M. Saif-Ur-Rehman, R.D. Schnabel, J.F. Taylor, Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle, PLoS Genet. 10(3), e1004254 (2014). DOI 10.1371/journal.pgen.1004254 [CrossRef] [Google Scholar]
- M.P. Heaton, G.P. Harhay, G.L. Bennett, R.T. Stone, W.M. Grosse, E. Casas, J.W. Keele, T.P. Smith, C.G. Chitko-McKown, W.W. Laegreid, Selection and use of SNP markers for animal identification and paternity analysis in U.S. beef cattle, Mamm Genome. 13(5), 272-81 (2022). DOI 10.1007/s00335-001-2146-3 [Google Scholar]
- Z. Edea, H. Dadi, S.W. Kim, T. Dessie, T. Lee, H. Kim, J.J. Kim, K.S. Kim, Genetic diversity, population structure and relationships in indigenous cattle populations of Ethiopia and Korean Hanwoo breeds using SNP markers, Front Genet., 4(35) (2013). DOI 10.3389/fgene.2013.00035 [CrossRef] [Google Scholar]
- S.B. Jemaa, N. Thamri, S. Mnara, E. Rebours, D. Rocha, M. Boussaha, Linkage disequilibrium and past effective population size in native Tunisian cattle, Genet Mol Biol., 42(1), 52-61 (2019). DOI 10.1590/1678-4685-GMB-2017-0342 [CrossRef] [PubMed] [Google Scholar]
- N. Moravčíková, R. Kasarda, Use of High-densitySNP analyses to develop a long-term strategy for conventionalpopulations to prevent loss of diversity – review, Actafytotechnica et zootechnica, 23(4), 236-240 (2020). DOI 10.15414/afz.2020.23.04.236-240 [CrossRef] [Google Scholar]
- A.A. Sermyagin, O.A. Bykova, O.G. Loretz, O.V. Kostyunina, N.A. Zinovieva, Assessment of genomic variability of productive traits in animals of Holstein black-and- white breed based on GWAS analysis and ROH patterns, Agricultural biology, 55(2), 257-274 (2020). DOI 10.15389/agrobiology.2020.2.257rus. [Google Scholar]
- A.V. Stepanov, O.A. Bykova, O.V. Kostyunina, S.D. Pilnikova, Determination of the relationship of SNP genotypes with the content of fatty acids of various spatial configurations in cow's milk, Agrarian Bulletin of the Urals, 24(1), 108-118 (2024). DOI 10.32417/1997-4868-2024-24-01-108-118. [CrossRef] [Google Scholar]
- A.A. Yurchenko, H.D. Daetwyler, N. Yudin, R.D. Schnabel, C.J. Vander Jagt, V. Soloshenko, B. Lhasaranov, R. Popov, J.F. Taylor, D.M. Larkin, Scans for signatures of selection in Russian cattle breed genomes reveal new candidate genes for environmental adaptation and acclimation, Sci Rep., 8(1), 12984 (2018). DOI 10.1038/s41598-018- 31304-w [CrossRef] [Google Scholar]
- A. Yurchenko, N. Yudin, R. Aitnazarov, A. Plyusnina, V. Brukhin, V. Soloshenko, B. Lhasaranov, R. Popov, I.A. Paronyan, K.V. Plemyashov, D.M. Larkin, Genome-wide genotyping uncovers genetic profiles and history of the Russian cattle breeds, Heredity (Edinb). 120(2), 125-137 (2018). DOI 10.1038/s41437-017-0024-3 [CrossRef] [PubMed] [Google Scholar]
- M. Gautier, D. Laloë, K. Moazami-Goudarzi, Insights into the genetic history of French cattle from dense SNP data on 47 worldwide breeds, PLoS One. 5(9), e13038 (2010). DOI 10.1371/journal.pone.0013038 [CrossRef] [Google Scholar]
- C.C. Chang, C.C. Chow, L.C. Tellier, S. Vattikuti, S.M. Purcell, J.J. Lee, Second- generation PLINK: rising to the challenge of larger and richer datasets, Gigascience, 4, 7 (2015). DOI 10.1186/s13742-015-0047-8 [CrossRef] [Google Scholar]
- A. Manichaikul, J.C. Mychaleckyj, S.S. Rich, K. Daly, M. Sale, W.M. Chen, Robust relationship inference in genome-wide association studies, Bioinformatics, 15(22), 2867-2873 (2010). DOI 10.1093/bioinformatics/btq559 [CrossRef] [PubMed] [Google Scholar]
- R Core Team (2023). R: A Language and Environment for Statistical Computing_. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R- project.org/ (Accessed 01.09.2024) [Google Scholar]
- H. Wickham, ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag New York, 2016). ISBN 978-3-319-24277-4 [Google Scholar]
- A. Kassambara, F. Mundt, _factoextra: Extract and Visualize the Results of Multivariate Data Analyses_. R package version 1.0.7 (2020) URL: https://CRAN.R- project.org/package=factoextra (Accessed 30.09.2024) [Google Scholar]
- A. Raj, M. Stephens, J.K. Pritchard, fastSTRUCTURE: Variational Inference of Population Structure in Large SNP Data Sets, Genetics, 197(2), 573-589 (2014). DOI 10.1534/genetics.114.164350 [CrossRef] [Google Scholar]
- A.A. Behr, K.Z. Liu, G. Liu-Fang, P. Nakka, S. Ramachandran, pong:fast analysis and visualization of latent clusters in population genetic data, Bioinformatics, 32(18), 2817-2823 (2016). DOI 10.1093/bioinformatics/btw327 [CrossRef] [PubMed] [Google Scholar]
- C. Amornbunchornvej, P. Wangkumhang, S. Tongsima, ipADMIXTURE: R package for inferring sub-population clusters based on genetic admixture, Bio Rxiv. (2020). DOI 10.1101/2020.03.21.001206 [Google Scholar]
- URL: https://www.uralplem.ru/rists/itogi-raboty-plemennykh-khozyajstv (Accessed 05.06.2024) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.