Open Access
Issue |
BIO Web Conf.
Volume 179, 2025
International Scientific and Practical Conference “From Modernization to Rapid Development: Ensuring Competitiveness and Scientific Leadership of the Agro-Industrial Complex” (IDSISA 2025)
|
|
---|---|---|
Article Number | 06001 | |
Number of page(s) | 7 | |
Section | Intelligent Technologies in Crop Production | |
DOI | https://doi.org/10.1051/bioconf/202517906001 | |
Published online | 09 June 2025 |
- J.K. Rohrs, H.G. Fendell-Hummel, S.L. MacDonald, M.L. Cooper, Best practices for monitoring visual simptoms of grapevine red blotch disease in black-fruited winegrape cultivars. Am. J. Enol. Vitic. 74, 0740036 (2023). https://doi.org/10.5344/ajev.2023.23044. [CrossRef] [Google Scholar]
- H.M. Oliveira, A. Tugnolo, N. Fontes, C. Marques, A. Geraldes, S. Jenne, H. Zappe, A. Graca, V. Giovenzana, R. Beghi, R. Guidetti, J. Piteira, P. Freitas, An autonomous Internet of Things spectral sensing system for in-situ optical monitoring of grape ripening: design, characterization, and operation. Comput. Electron. Agric., 217, 108599 (2024). https://doi.org/10.1016/j.compag.2023.108599. [CrossRef] [Google Scholar]
- Karim, Md. Jawadul, Md. Omaer Faruq Goni, Md. Nahiduzzaman, Mominul Ahsan, Julfikar Haider and Marcin Kowalski. “Enhancing agriculture through real-time grape leaf disease classification via an edge device with a lightweight CNN architecture and Grad-CAM.” Scientific Reports 14, n. pag. (2024) [PubMed] [Google Scholar]
- M. Faralli, S. Mallucci, A. Bignardi, M. Varner, M. Bertamini, Four decades in the vineyard: the impact of climate change on grapevine phenology and wine quality in northern Italy. OENO One. (2024). https://doi.org/10.20870/oeno-one.2024.58.3.8083. [Google Scholar]
- M. Javaid, A. Haleem, R.P. Singh, R. Suman, Enhancing smart farming through the applications of Agriculture 4.0 technologies. Int. J. Intell. Networks, 3, 150-164 (2022). https://doi.org/10.1016/j.ijin.2022.09.004. [CrossRef] [Google Scholar]
- S.O. Araujo, R.S. Peres, J. Barata, F. Lidon, J.C. Ramalho, Characterising the Agriculture 4.0 landscape-emerging trends, challenges and opportunities, Agronomy, 11(4), 667 (2021). https://doi.org/10.3390/agronomy11040667. [CrossRef] [Google Scholar]
- E. Anastasiou, C. Templalexis, D. Lentzou, K. Biniari, G. Xanthopoulos, S. Fountas, Do soil and climatic parameters affect yield and quality on table grapes? Smart Agric. Technol, 3, 100088 (2023). https://doi.org/10.1016/j.atech.2022.100088. [Google Scholar]
- K.T. Yao, O.K. Kouadio, I. Coulibaly, T.H. Kouakou, Impact of terroir on some morphophysiological parameters of grapevines in four agroecological zones of Cote d’Ivoire, J. Agric. Chem. Environ. 14(1), 1-22 (2025). https://doi.org/10.4236/jacen.2025.141001. [Google Scholar]
- D. Cyr, T.B. Shaw, The impact of global warming on Ontario’s icewine industry, IVES Conference Series, Terroir 2010 (2010). [Google Scholar]
- J.A. Williamson, R.M. Petrone, R. Valentini, M.L. Macrae, A. Reynolds, Assessing the influence of climate controls on grapevine biophysical responses: a review of Ontario viticulture in a changing climate, Can. J. Plant Sci., 104(5), 394-409 (2024). https://doi.org/10.1139/cjps-2023-0161. [CrossRef] [Google Scholar]
- Kaziev, Garry Z., M. P. Koroteev, T I Kokoev, A. M. Koroteev, Anna F. Stepnova and C G Dzhioeva. “Research in the field of processing plant materials, and obtaining new materials, biologically active substances and medicines.” IOP Conference Series: Earth and Environmental Science, 624, n. pag. (2021) [Google Scholar]
- A. Farbo, N.G. Trombetta, L. de Palma, E. Borgogno-Mondino, Estimation of intercepted solar radiation and stem water potential in a table grape vineyard covered by plastic film using sentinel-2 data: a comparison of OLS-, MLR-, and ML-based methods, Plants, 13(9), 1203 (2024). https://doi.org/10.3390/plants13091203. [Google Scholar]
- C. van Leeuwen, G. Sgubin, B. Bois, N. Ollat, D. Swingedouw, S. Zito, G.A. Gambetta, Climate change impacts and adaptations of wine production. Nat. Rev. Earth Environ, 5, 258–275 (2024). https://doi.org/10.1038/s43017-024-00521-5. [CrossRef] [Google Scholar]
- W. Wang, L. Yang, N. Noguchi, Development of a grape-harvesting robot using a multi- step detection method based on AI and a position-estimation algorithm, Smart Agric. Technol., 7, 100574 (2024). https://doi.org/10.1016/j.atech.2024.100574. [CrossRef] [Google Scholar]
- C. Lytridis, G. Siavalas, T. Pachidis, S. Theocharis, E. Moschou, V.G. Kaburlasos, Grape maturity estimation for personalized agrobot harvest by Fuzzy Lattice Reasoning (FLR) on an ontology of constraints. Sustainability, 15 (9), 7331 (2023). https://doi.org/10.3390/su15097331. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.