Open Access
Issue |
BIO Web Conf.
Volume 183, 2025
International Conference on Life Sciences and Technology (ICoLiST 2024)
|
|
---|---|---|
Article Number | 01006 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/bioconf/202518301006 | |
Published online | 09 July 2025 |
- Yao, X., Zheng, X., Zhao, R., Li, Z., Shen, H., Li, T., Gu, Z., Zhou, Y., Xu, N., Shi, A., Wang, Q., and Lu, S. (2021) Quality Formation of Adzuki Bean Baked: From Acrylamide to Volatiles under Microwave Heating and Drum Roasting. Foods, 10 (11), 2762. [Google Scholar]
- Visvanathan R, K.T. (2014) Acrylamide in Food Products: A Review. J. Food Process. Technol., 05 (07). [Google Scholar]
- de Vleeschouwer, K., Van der Plancken, I., Van Loey, A., and Hendrickx, M.E. (2008) Kinetics of Acrylamide Formation/Elimination Reactions as Affected by Water Activity. Biotechnol. Prog., 23 (3), 722-728. [CrossRef] [Google Scholar]
- Casado, F.J., and Montano, A. (2008) Influence of Processing Conditions on Acrylamide Content in Black Ripe Olives. J. Agric. Food Chem., 56 (6), 2021-2027. [Google Scholar]
- Erkekoglu, P., and Baydar, T. (2014) Acrylamide neurotoxicity. Nutr. Neurosci., 17 (2), 49-57. [Google Scholar]
- Pennisi, M., Malaguarnera, G., Puglisi, V., Vinciguerra, L., Vacante, M., and Malaguarnera, M. (2013) Neurotoxicity of Acrylamide in Exposed Workers. Int. J. Environ. Res. Public. Health, 10 (9), 3843-3854. [Google Scholar]
- Jonatan, Y.E., and Kresna, A. (2022) Acrylamide Induced Neurotoxicity in Workers. Indones. J. Community Occup. Med., 2 (1), 26-31. [Google Scholar]
- Kanthasamy, A., Jin, H., Charli, A., Vellareddy, A., and Kanthasamy, A. (2019) Environmental neurotoxicant-induced dopaminergic neurodegeneration: a potential link to impaired neuroinflammatory mechanisms. Pharmacol. Ther., 197, 61-82. [Google Scholar]
- Kane, E.A., Gershow, M., Afonso, B., Larderet, I., Klein, M., Carter, A.R., de Bivort, B.L., Sprecher, S.G., and Samuel, A.D.T. (2013) Sensorimotor structure of Drosophila larva phototaxis. Proc. Natl. Acad. Sci., 110 (40). [Google Scholar]
- Sims, D.W., Humphries, N.E., Hu, N., Medan, V., and Berni, J. (2019) Optimal searching behaviour generated intrinsically by the central pattern generator for locomotion. eLife, 8. [Google Scholar]
- Berni, J., Pulver, S.R., Griffith, L.C., and Bate, M. (2012) Autonomous circuitry for substrate exploration in freely moving Drosophila larvae. Curr. Biol., 22 (20), 1861-1870. [CrossRef] [Google Scholar]
- Khoiroh, D., Hindun, I., Fatmawati, D., Zubaidah, S., Susanto, H., and Fauzi, A. (2022) Drosophila melanogaster behavior study: Does plumbum affect pupation and climbing ability of imago? AIP Conf. Proc. [Google Scholar]
- Khoiroh, D., Hindun, L., Fatmawati, D., Zubaidah, S., Susanto, H., and Fauzi, A. (2023) Drosophila melanogaster behavior study: Does plumbum affect pupation and climbing ability of imago? AIP Conf. Proc., 020099. [CrossRef] [Google Scholar]
- Groen, C.M., Podratz, J.L., Treb, K., and Windebank, A.J. (2018) Drosophila strain specific response to cisplatin neurotoxicity. Fly (Austin), 12 (3-4), 174-182. [Google Scholar]
- Pappus, S.A., Ekka, B., Sahu, S., Sabat, D., Dash, P., and Mishra, M. (2017) A toxicity assessment of hydroxyapatite nanoparticles on development and behaviour of Drosophila melanogaster. J. Nanoparticle Res., 19 (4), 136. [Google Scholar]
- Boltax, A.L., Armanious, S., Kosinski-Collins, M.S., and Pontrello, J.K. (2015) Connecting biology and organic chemistry introductory laboratory courses through a collaborative research project. Biochem. Mol. Biol. Educ., 43 (4), 233-244. [CrossRef] [PubMed] [Google Scholar]
- Nainu, F., Nakanishi, Y., and Shiratsuchi, A. (2019) Fruit fly as a model organism in the study of human diseases and drug discovery. J. Cent. Med. Educ. Sapporo Med. Univ., 10 (September 2022), 21-32. [Google Scholar]
- Park, J.-S., Samanta, P., Lee, S., Lee, J., Cho, J.-W., Chun, H.-S., Yoon, S., and Kim, W.-K. (2021) Developmental and Neurotoxicity of Acrylamide to Zebrafish. Int. J. Mol. Sci., 22 (7), 3518. [Google Scholar]
- de Souza Lima, A.C.M., de Alvarenga, K.A.F., Codo, B.C., Sacramento, E.K., Rosa, D.V.F., Souza, R.P., Romano-Silva, M.A., and Souza, B.R. (2020) Impairment of motor but not anxiety-like behavior caused by the increase of dopamine during development is sustained in zebrafish larvae at later stages. Int. J. Dev. Neurosci., 80 (2), 106-122. [Google Scholar]
- Faria, M., Valls, A., Prats, E., Bedrossiantz, J., Orozco, M., Porta, J.M., Gömez-Olivan, L.M., and Raldüa, D. (2019) Further characterization of the zebrafish model of acrylamide acute neurotoxicity: gait abnormalities and oxidative stress. Sci. Rep., 9 (1), 7075. [Google Scholar]
- Farodoye, O.M., Otenaike, T.A., Loreto, J.S., Adedara, A.O., Silva, M.M., Barbosa, N.V., da Rocha, J.B.T., Abolaji, A.O., and Loreto, E.L.S. (2024) Evidence of acrylamide-induced behavioral deficit, mitochondrial dysfunction and cell death in Drosophila melanogaster. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol., 284, 109971. [CrossRef] [Google Scholar]
- Prasad, S.N., and Muralidhara (2012) Evidence of acrylamide induced oxidative stress and neurotoxicity in Drosophila melanogaster - Its amelioration with spice active enrichment: Relevance to neuropathy. NeuroToxicology, 33 (5), 1254-1264. [Google Scholar]
- Prasad, S.N., and Muralidhara, M. (2014) Neuroprotective effect of geraniol and curcumin in an acrylamide model of neurotoxicity in Drosophila melanogaster: Relevance to neuropathy. J. Insect Physiol., 60, 7-16. [Google Scholar]
- Li, J., Li, D., Yang, Y., Xu, T., Li, P., and He, D. (2016) Acrylamide induces locomotor defects and degeneration of dopamine neurons in Caenorhabditis elegans. J. Appl. Toxicol., 36 (1), 60-67. [Google Scholar]
- Duan, X., Wang, Q.-C., Chen, K.-L., Zhu, C.-C., Liu, J., and Sun, S.-C. (2015) Acrylamide toxic effects on mouse oocyte quality and fertility in vivo. Sci. Rep., 5 (1), 11562. [Google Scholar]
- Simào, D., Terrasso, A.P., Teixeira, A.P., Brito, C., Sonnewald, U., and Alves, P.M. (2016) Functional metabolic interactions of human neuron-astrocyte 3D in vitro networks. Sci. Rep., 6 (1), 33285. [Google Scholar]
- Albogami, S. (2020) Upregulation of Antioxidant Gene Expressions and Enzyme Activity Against Acrylamide-Induced Neurotoxicity in Mice after Grape Seed Extract Treatment. Open Biotechnol. J., 14 (1), 23-31. [Google Scholar]
- Raldüa, D., Casado, M., Prats, E., Faria, M., Puig-Castellvi, F., Pérez, Y., Alfonso, I., Hsu, C.-Y., Arick M.A. II, Garcia-Reyero, N., Ziv, T., Ben-Lulu, S., Admon, A., and Pina, B. (2020) Targeting redox metabolism: the perfect storm induced by acrylamide poisoning in the brain. Sci. Rep., 10 (1), 312. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.