Open Access
Issue |
BIO Web Conf.
Volume 183, 2025
International Conference on Life Sciences and Technology (ICoLiST 2024)
|
|
---|---|---|
Article Number | 01010 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/bioconf/202518301010 | |
Published online | 09 July 2025 |
- R. Prassetio, M. A. Assydiqy, C. D. Kusmindari, Y. Pasmawati, & M. Gunarto, Filtering Swamp Water into Clean Water Using Carbon Charcoal and Silica Sand Filter Media. International Journal of Scientific Research and Management (IJSRM), 12 (2024) 1018-1027. https://doi.org/10.18535/ijsrm/v12i02.ec01. [Google Scholar]
- C. Zamora-Ledezma, D. Negrete-Bolagay, F. Figueroa, E. Zamora-Ledezma, M. Ni, F. Alexis, & V. H. Guerrero, Heavy Metal Water Pollution: A Fresh Look about Hazards, Novel and Conventional Remediation Methods. Environmental Technology & Innovation, 22 (2021) 101504-101529. https://doi.org/10.10167j.eti.2021.101504. [Google Scholar]
- H. Y. Choi, J. H. Bae, Y. Hasegawa, S. An, I. S. Kim, H. Lee, & M. Kim, Thiol-Functionalized Cellulose Nanofiber Membranes for the Effective Adsorption of Heavy Metal Ions in Water. Carbohydrate Polymers, 234 (2020) 115881-115887. https://doi.org/10.1016/j.carbpol.2020.115881. [CrossRef] [PubMed] [Google Scholar]
- Amalia Hariyanti, Onie Wiwid Jayanthi, Ashari Wicaksono, Ary Giri Dwi Kartika, Makhfud Efendy, Dwi Syadina Putri, & Putri Ayu Rahmadani, Sebaran Logam Berat Timbal (Pb) pada Air Laut Sebagai Bahan Baku Garam Di Perairan Padelegan Pamekasan. Jurnal Ilmiah Kelautan dan Perikanan, 2 (2001) 282-287. [Google Scholar]
- U. Sulaeman, A. Baharuddin, & A. Puspitasari, Analisis Spasial Kualitas Air oleh Logam Berat Timbal (Pb) di Kanal Hertasning Kota Makassar Tahun 2022. Window of Public Health Journal, 3 (2022) 470-479. https://doi.org/10.33096/woph.v3i3.81. [Google Scholar]
- M. Asim & K. Nageswara Rao, Assessment of Heavy Metal Pollution in Yamuna River, Delhi-NCR, using Heavy Metal Pollution Index and GIS. Environmental Monitoring and Assessment, 193 (2021) 103-118. https://doi.org/10.1007/s10661-021-08886-6. [Google Scholar]
- World Health Organization (WHO), Almost 1 million people die every year due to lead poisoning, with more children suffering long-term health effects. World Health Organization, (2022). https://www.google.com/search?q=WHO+1+million+people+dead+because+Pb+lead & oq=WHO+1+million+people+dead+because+Pb+lead & gs_lcrp=EgZjaHJvbWUyBg gAEEUYOdIBCTI0MDg0ajBqN6gCALACAA & sourceid=chrome & ie=UTF-8 (accessed June 7, 2024). [Google Scholar]
- M. Hasanpour & M. Hatami, Application of Three Dimensional Porous Aerogels as Adsorbent for Removal of Heavy Metal Ions from Water/Wastewater: A Review Study. Advances in Colloid and Interface Science, 284 (2020) 102247-102270. https://doi.org/10.1016/j.cis.2020.102247. [CrossRef] [PubMed] [Google Scholar]
- S. Singh, D. Kapoor, S. Khasnabis, J. Singh, & P. C. Ramamurthy, Mechanism and Kinetics of Adsorption and Removal of Heavy Metals from Wastewater using Nanomaterials. Journal of Environmental Chemistry Letters, 19 (2021) 2351-2381. https://doi.org/10.1007/S10311-021-01196-W. [Google Scholar]
- R. Shrestha, S. Ban, S. Devkota, S. Sharma, R. Joshi, A. P. Tiwari, H. Y. Kim, & M. K., Joshi, Technological Trends in Heavy Metals Removal from Industrial Wastewater: A Review. Journal of Environmental Chemical Engineering, 9 (2021) 105668-105686. https://doi.org/10.1016/jjece.202L105688. [Google Scholar]
- R. Chakraborty, A. Asthana, A. K. Singh, B. Jain, & A. B. H. Susan, Adsorption of Heavy Metal Ions by Various Low-Cost Adsorbents: a Review. International Journal of Environmental Analytical Chemistry, 102 (2022) 342-379. https://doi.org/10.1080/03067319.2020.1722811. [Google Scholar]
- D. T. Nguyen, H. N. Tran, R.-S. Juang, N. D. Dat, F. Tomul, A. Ivanets, S. H. Woo, A. Hosseini-Bandegharaei, V. P. Nguyen, & H.-P. Chao, Adsorption process and mechanism of acetaminophen onto commercial activated carbon. Journal of Environmental Chemical Engineering, 8 (2020) 104408. https://doi.org/10.1016/jjece.2020.104408. [Google Scholar]
- Y. Gao, Q. Yue, B. Gao, & A. Li, Insight into Activated Carbon from Different Kinds of Chemical Activating Agents: A Review. Science of The Total Environment, 746 (2020) 141094-141112. https://doi.org/10.1016/j.scitotenv.2020.141094. [Google Scholar]
- M. Mariana, A. K. HPS, E. M. Mistar, E. B. Yahya, T. Alfatah, M. Danish, & M. Amayreh, Recent Advances in Activated Carbon Modification Techniques for Enhanced Heavy Metal Adsorption. Journal of Water Process Engineering, 43 (2021) 102221-102237. https://doi.org/10.1016/jjwpe.2021.102221. [Google Scholar]
- S. M. Kharrazi, M. Soleimani, M. Jokar, T. Richards, A. Pettersson, & N. Mirghaffari, Pretreatment of Lignocellulosic Waste as a Precursor for Synthesis of High Porous Activated Carbon and its Application for Pb(II) and Cr(VI) Adsorption from Aqueous Solutions. International Journal of Biological Macromolecules, 180 (2021) 299-310. https://doi.org/10.1016/j.ijbiomac.2021.03.078. [Google Scholar]
- W. S. Chai, J. Y. Cheun, P. S. Kumar, M. Mubashir, Z. Majeed, F. Banat, S.-H. Ho, & P. L. Show, A Review on Conventional and Novel Materials Towards Heavy Metal Adsorption in Wastewater Treatment Application. Journal of Cleaner Production, 296 (2021) 126589-126604. https://doi.org/10.1016/jjclepro.2021.126589. [Google Scholar]
- H.-P. Wang, X.-H. Huang, J.-N. Chen, M. Dong, C.-Z. Nie, & L. Qin, Modified Superhydrophobic Magnetic Fe3Ü4 Nanoparticles for Removal of Microplastics in Liquid Foods. Chemical Engineering Journal, 476 (2023) 146562-146574. https://doi.org/10.1016/j.cej.2023.146562. [CrossRef] [Google Scholar]
- V. Priyan V, N. Kumar, & S. Narayanasamy, Toxicological Assessment and Adsorptive Removal of Lead (Pb) and Congo red (CR) from Water by Synthesized Iron Oxide/Activated Carbon (Fe3Ü4/AC) Nanocomposite. Chemosphere, 294 (2022) 133758-133770. https://doi.org/10.1016Zj.chemosphere.2022.133758. [CrossRef] [PubMed] [Google Scholar]
- Z. Duan, W. Zhang, M. Lu, Z. Shao, W. Huang, J. Li, Y. Li, J. Mo, Y. Li, & C. Chen, Magnetic Fe3O4/Activated Carbon for Combined Adsorption and Fenton Oxidation of 4-Chlorophenol. Carbon, 167 (2020) 351-363. https://doi.org/10.1016/j.carbon.2020.05.106. [CrossRef] [Google Scholar]
- A. Taufiq, A. Nikmah, A. Hidayat, S. Sunaryono, N. Mufti, N. Hidayat, & H. Susanto, Synthesis of Magnetite/Silica Nanocomposites from Natural Sand to Create a Drug Delivery Vehicle. Heliyon, 4 (2020) 1-10. [Google Scholar]
- B. Bai, Y. Zhu, J. Miao, X. Wang, S. Bi, L. Kong, W. Liu, & L. Zhang, Electromagnetic Wave Absorption Performance and Mechanisms of Geoploymer-based Composites Containing Core-Shell SiO2@Fe3O4 Nanoparticles. Ceramics International, 48 (2022) 2755-2762. https://doi.org/10.1016/j.ceramint.2021.10.062. [CrossRef] [Google Scholar]
- H. Kiziltaç, T. Tekin, & D. Tekin, Synthesis, Characterization of Fe3O4@SiO2@ZnO Composite with a Core-Shell Structure and Evaluation of its Photocatalytic Activity. Journal of Environmental Chemical Engineering, 8 (2020) 104160-104168. https://doi.org/10.1016/jjece.2020.104160. [Google Scholar]
- C. Liu, X. Wang, L. Qin, H. Li, & W. Liang, Magnetic Coagulation and Flocculation of a Kaolin Suspension using Fe3O4 Coated with FSiO2. Journal of Environmental Chemical Engineering, 9 (2021) 105980-105990. https://doi.org/10.1016/j.jece.2021.105980. [Google Scholar]
- C. Xu, S. Shi, X. Wang, H. Zhou, L. Wang, L. Zhu, G. Zhang, & D. Xu, Electrospun SiO2-MgO Hybrid Fibers for Heavy Metal Removal: Characterization and Adsorption Study of Pb(II) and Cu(II). Journal of Hazardous Materials, 381 (2020) 120974-120985. https://doi.org/10.1016/jjhazmat2019.120974. [Google Scholar]
- A. Taufiq, R. E. Saputro, H. Susanto, N. Hidayat, S. Sunaryono, T. Amrillah, H. W. Wijaya, N. Mufti, & F. M. Simanjuntak, Synthesis of FesOVAg Nanohybrid Ferrofluids and Their Applications as Antimicrobial and Antifibrotic Agents. Journal of Heliyon, 6 (2020) 05813. https://doi.org/10.10167j.heliyon.2020.e05813. [Google Scholar]
- F. Malega, I. P. T. Indrayana, & E. Suharyadi, Synthesis and Characterization of the Microstructure and Functional Group Bond of Fe3O4 Nanoparticles from Natural Iron Sand in Tobelo North Halmahera. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 7 (2018) 13-22. https://doi.org/10.24042/jipfalbiruni.v7i2.2913. [Google Scholar]
- Y. Hashimoto, M. Taguchi, S. Fukami, H. Momono, T. Matsushita, H. Matsuda, F. Matsui, & H. Daimon, Site-sensitive X-ray photoelectron spectroscopy of Fe3O4 by photoelectron diffraction. Surface and Interface Analysis, 51 (2019) 115-119. https://doi.org/10.1002/sia.6568. [Google Scholar]
- S. Upadhyay, K. Parekh, & B. Pandey, Influence of Crystallite Size on the Magnetic Properties of Fe3O4 Nanoparticles. Journal of Alloys and Compounds, 678 (2016) 478-485. https://doi.org/10.1016/jjallcora2016.03.279. [Google Scholar]
- R. Ellerbrock, M. Stein, & J. Schaller, Comparing Amorphous Silica, Short-Range- Ordered Silicates and Silicic Acid Species by FTIR. Scientific Reports, 12 (2022) 11708. https://doi.org/10.1038/s41598-022-15882-4. [Google Scholar]
- S. Rajput, C. U. Pittman Jr, & D. Mohan, Magnetic Magnetite (Fe3O4) Nanoparticle Synthesis and Applications for Lead (Pb2+) and Chromium (Cr6+) Removal from Water. Journal of Colloid and Interface Science, 468 (2016) 334-346. https://doi.org/10.1016/jjcis.2015.12.008. [Google Scholar]
- S. Ilyas, Heryanto, B. Abdullah, & D. Tahir, X-ray diffraction analysis of nanocomposite Fe3O4/activated carbon by Williamson-Hall and size-strain plot methods. Nano-Structures & Nano-Objects, 20 (2019) 100396. https://doi.org/10.1016/j.nanoso.2019.100396. [Google Scholar]
- Y. Han, X. Cao, X. Ouyang, S. P. Sohi, & J. Chen, Adsorption kinetics of magnetic biochar derived from peanut hull on removal of Cr(VI) from aqueous solution: Effects of production conditions and particle size. Chemosphere, 145 (2016) 336-341. https://doi.org/10.1016/j.chemosphere.2015.11.050. [CrossRef] [PubMed] [Google Scholar]
- A. K. Ibrahem, M. F. Mubarak, M. Keshawy, Y. M. Moustafa, M. M. Khalil, & T. Abdel Moghny, Magnetite-Silica Core-Shell Grafted Myristic Acid Nanocomposites for Oil Adsorption from Petroleum Wastewater. Journal of Dispersion Science and Technology, 45 (2023) 129-139. https://doi.org/10.1080/01932691.2022.2135524. [Google Scholar]
- A. Wahfiudin, A. D. Pramata, S. T. Wicaksono, Q. H. Ng, P. Y. Hoo, S. K. Enche Ab Rahim, M. R. Jamalludin, & A. M. Nasib, Parameters adjustments for facile synthesis of high magnetization iron oxide nanoparticles from natural sand. Nano-Structures & Nano-Objects, 37 (2024) 101114. https://doi.org/10.1016/j.nanoso.2024.101114. [Google Scholar]
- M. G. Alalm, A. Tawfik, & S. Ookawara, Combined Solar Advanced Oxidation and PAC Adsorption for Removal of Pesticides from Industrial Wastewater. J. Mater. Environ. Sci, 6 (2015) 800-809. [Google Scholar]
- H. Fan, X. Ma, S. Zhou, J. Huang, Y. Liu, & Y. Liu, Highly efficient removal of heavy metal ions by carboxymethyl cellulose-immobilized Fe3O4 nanoparticles prepared via high-gravity technology. Carbohydrate Polymers, 213 (2019) 39-49. https://doi.org/10.1016/j.carbpol.2019.02.067. [CrossRef] [PubMed] [Google Scholar]
- A. M. Nasir, P. S. Goh, M. S. Abdullah, B. C. Ng, & A. F. Ismail, Adsorptive nanocomposite membranes for heavy metal remediation: Recent progresses and challenges. Chemosphere, 232 (2019) 96-112. https://doi.Org/10.1016/j.chemosphere.2019.05.174. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.