Open Access
Issue |
BIO Web Conf.
Volume 183, 2025
International Conference on Life Sciences and Technology (ICoLiST 2024)
|
|
---|---|---|
Article Number | 01015 | |
Number of page(s) | 17 | |
DOI | https://doi.org/10.1051/bioconf/202518301015 | |
Published online | 09 July 2025 |
- M. G. de Morais, B. da S. Vaz, E. G. de Morais, & J. A. V. Costa, Biologically Active Metabolites Synthesized by Microalgae. BioMed Research International, 2015 (2015) 1-15. https://doi.org/10.1155/2015/835761. [CrossRef] [Google Scholar]
- I. T. K. Ru, Y. Y. Sung, M. Jusoh, M. E. A. Wahid, & T. Nagappan, Chlorella vulgaris: a perspective on its potential for combining high biomass with high value bioproducts. Applied Phycology, 1 (2020) 2-11. https://doi.org/10.1080/26388081.2020.1715256. [CrossRef] [Google Scholar]
- G. Guclu, H. Kelebek, & S. Selli, Antioxidant activity in olive oils. Olives and Olive Oil in Health and Disease Prevention (Elsevier, 2021), pp. 313-325. https://doi.org/10.1016/B978-0-12-819528-4.00031-6. [Google Scholar]
- P. Anbudhasan, A. Surendaraj, S. Karkuzhali, & S. Sathishkumaran, Natural Antioxidants and its Benefits. Int. J. FoodNutr. Sci, 3 (2014) 225-232. [Google Scholar]
- V. F. F. WELZ, J. R. TRETTEL, A. B. NASCIMENTO, & H. M. MAGALHÄES, GROWTH, ENZYMATIC ACTIVITY, AND ANTIOXIDANT ACTIVITY OF SWEET BASIL GROWN IN VITRO. Revista Caatinga, 33 (2020) 660-670. https://doi.org/10.1590/1983-21252020v33n309rc. [Google Scholar]
- J. Han, L. Zhang, S. Wang, G. Yang, L. Zhao, & K. Pan, Co-culturing bacteria and microalgae in organic carbon containing medium. Journal of Biological Research (Greece), 23 (2016). https://doi.org/10.1186/s40709-016-0047-6. [Google Scholar]
- E.-S. Salama, A. N. Kabra, M.-K. Ji, J. R. Kim, B. Min, & B.-H. Jeon, Enhancement of microalgae growth and fatty acid content under the influence of phytohormones. Bioresource Technology, 172 (2014) 97-103. https://doi.org/10.1016/j.biortech.2014.09.002. [CrossRef] [PubMed] [Google Scholar]
- H. Hartini, K. Rosmiati, & A. F. R. Sihombing, Analisis Kandungan Fitokimia dan Aktivitas Antioksidan Mikroalga Chlorella sp. Berdasarkan Variasi Waktu Pencahayaan. JURNAL KESEHATAN PERINTIS (Perintis's Health Journal), 8 (2021) 139-146. https://doi.org/10.33653/jkp.v8i2.642. [Google Scholar]
- S. Elystia, R. Muria, & I. P. Pertiwi, PEMANFAATANMIKROALGA Chlorella sp. UNTUK PRODUKSI LIPID DALAM MEDIA LIMBAH CAIR HOTEL DENGAN VARIASIRASIO C:NDANPANJANG GELOMBANG CAHAYA (2019). [Google Scholar]
- Targowska-Duda, Katarzyna M., Hugo Arias, & Krzysztof Jözwiak, Application of in silico methods to support experimental data: Interactions of antidepressants with nicotinic acetylcholine receptors. The Open Conference Proceedings Journal, 4 (2013). [Google Scholar]
- M. M. Azimatun Nur, Effect of Bicarbonate, Iron, and Salt, on Lipid Productivity of Chlorella sp. Extracted by Osmotic Shock Method. Eksergi, 11 (2014) 19. https://doi.org/10.31315/e.v11i2.366. [Google Scholar]
- D. Kurnia, E. Rosliana, D. Juanda, & Z. Nurochman, AKTIVITAS ANTIOKSIDAN DAN PENETAPAN KADAR FENOL TOTAL DARI MIKROALGA LAUT Chlorella vulgaris. Jurnal Kimia Riset, 5 (2020) 14. https://doi.org/10.20473/jkr.v5i1.19823. [Google Scholar]
- F. A. Souhoka, N. Hattu, & M. Huliselan, Uji Aktivitas Antioksidan Ekstrak Metanol Biji Kesumba Keling (Bixa orellana L). Indo. J. Chem. Res., 7 (2019) 25-31. https://doi.org/10.30598//ijcr.2019.7-fas. [Google Scholar]
- M. Rafaelina, Y. Rustam, & S. Amini, PERTUMBUHAN DAN AKTIVITAS ANTIOKSIDAN DARI MIKROALGA Porphyridium cruentum dan Chlorella sp. BIOMA, 12 (n.d.) 2016. https://doi.org/10.21009/Bioma. [Google Scholar]
- I. Nafi'ah, S. Prabaningtyas, A. Witjoro, Y. K. Basitoh, A. Rodiansyah, & D. Aridhowi, Exploration of IAA Producing Bacteria And Amylolitic Bacteria From Several East Java Lakes, and Their Potency For Microbial Consortium To Accelerate Chlorella Vulgaris Growth. (2021). https://doi.org/10.21203/rs.3.rs-520439/v1. [Google Scholar]
- Reetu, M. Clifford, R. Prakash, & M. P. Rai, Latest advances and status analysis of nanomaterials for microalgae photosystem, lipids and biodiesel: A state of art. Journal of Environmental Chemical Engineering, 11 (2023) 109111. https://doi.org/10.1016/j.jece.2022.109111. [Google Scholar]
- S. Prabaningtyas, A. Witjoro, D. Aridowi, D. Aribah, & Y. K. Basithoh, Co-culture mikroalga Chlorella sp. dan bakteri (penghasil IAA dan pelarut fosfat), prospek industri mikroalga masa depan. .[Laporan Penelitian]. Jurusan Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Malang, (2017). [Google Scholar]
- M. A. Morel, A. Iriarte, E. Jara, H. Musto, & S. Castro-Sowinski, Revealing the biotechnological potential of Delftia sp. JD2 by a genomic approach. AIMS Bioengineering, 3 (2016) 156-175. https://doi.org/10.3934/bioeng.2016.2.156. [CrossRef] [Google Scholar]
- S. K. Bariyyah, A. Hanapi, A. G. Fasya, & M. Abidin, UJI AKTIVITAS ANTIOKSIDAN TERHADAP DPPH DAN IDENTIFIKASI GOLONGAN SENYAWA AKTIF EKSTRAK KASAR MIKROALGA Chlorella sp. HASIL KULTIVASI DALAM MEDIUM EKSTRAK TAUGE. ALCHEMY, (2013). https://doi.org/10.18860/al.v0i0.2890. [Google Scholar]
- H. Safafar, J. Van Wagenen, P. Moller, & C. Jacobsen, Carotenoids, Phenolic Compounds and Tocopherols Contribute to the Antioxidative Properties of Some Microalgae Species Grown on Industrial Wastewater. Marine Drugs, 13 (2015) 7339-7356. https://doi.org/10.3390/md13127069. [Google Scholar]
- S. Kumar P, Cultivation and Chemical Composition of Microalgae Chlorella vulgaris and its Antibacterial Activity against Human Pathogens. Journal of Aquaculture & Marine Biology, 5 (2017). https://doi.org/10.15406/jamb.2017.05.00119. [Google Scholar]
- V. Novianti, D. Indradewa, Maryani, & D. Rachmawati, Enzymatic antioxidant activity and physiological responses of local swamp rice cultivars from Kalimantan- Indonesia under iron toxicity during vegetative stage. Journal of Crop Science and Biotechnology, 26 (2023) 369-386. https://doi.org/10.1007/s12892-022-00187-9. [Google Scholar]
- O. A. Kirecci, The effects of salt stress, SNP, ABA, IAA, and GA applications on antioxidant enzyme activities in Helianthus annuus L. Fresenius Environ. Bull , 27 (2018) 3783-3788. [Google Scholar]
- L. Ho Thanh Lam, N. H. Le, L. Van Tuan, H. Tran Ban, T. Nguyen Khanh Hung, N. T. K. Nguyen, L. Huu Dang, & N. Q. K. Le, Machine Learning Model for Identifying Antioxidant Proteins Using Features Calculated from Primary Sequences. Biology, 9 (2020) 325. https://doi.org/10.3390/biology9100325. [CrossRef] [PubMed] [Google Scholar]
- K.-A. Kim, K. H. Cha, S.-J. Choi, C.-H. Pan, & S. H. Jung, The Extract of Chlorella vulgaris Protects Transformed Retinal Ganglion Cells from Oxidative Stress-induced Cells Death. Journal of Food Biochemistry, 38 (2014) 129-139. https://doi.org/10.1111/jfbc. 12030. [Google Scholar]
- Y. Ganeson, P. Paramasivam, K. M. Palanisamy, N. Govindan, & G. P. Maniam, LCMS and FTIR profiling of microalga Chlorella sp. for cosmetics and skin care applications. Cleaner Water, 2 (2024) 100028. https://doi.Org/10.1016/j.clwat.2024.100028. [CrossRef] [Google Scholar]
- Ansari, Q. Perween, G. Kumar, M. Jayanand, & D. V. Ral., Effect of butylated hydroxyanisole on hydrogen peroxide induced oxidative stress on cerebral glioma cell line. Asian J Pharm Clin Res , 7 (2014) 177-180. [Google Scholar]
- I. D. , Hickson, Michael A. Gorman, & Paul S. Freemont, "Structure and functions of the major human AP endonuclease HAP1/Ref-1." In DNA Damage and Repair: Advances from Phage to Humans. In J.A. Nickoloff, & M.F. Hoekstra, eds., DNA Damage and Repair: Advances from Phage to Humans, 1st ed, (Totowa, NJ: Humana Press, 2001), pp. 87-105. [Google Scholar]
- S. P. G. Moore, K. J. Toomire, & P. R. Strauss, DNA modifications repaired by base excision repair are epigenetic. DNA Repair, 12 (2013) 1152-1158. https://doi.org/10.1016ZJ.dnarep.2013.10.002. [CrossRef] [PubMed] [Google Scholar]
- C. A. Lipinski, F. Lombardo, B. W. Dominy, & P. J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3-25. 1. >Advanced Drug Delivery Reviews, 46 (2001) 3-26. https://doi.org/10.1016/S0169-409X(00)00129-0. [Google Scholar]
- L. Z. Benet, C. M. Hosey, O. Ursu, & T. I. Oprea, BDDCS, the Rule of 5 and drugability. Advanced Drug Delivery Reviews, 101 (2016) 89-98. https://doi.org/10.1016/j.addr.2016.05.007. [CrossRef] [PubMed] [Google Scholar]
- C. A. Lipinski, Drug-like properties and the causes of poor solubility and poor permeability. Journal of Pharmacological and Toxicological Methods, 44 (2000) 235-249. https://doi.org/10.1016/S1056-8719(00)00107-6. [Google Scholar]
- D. S. M. Sim, Drug Absorption and Bioavailability. Pharmacological Basis of Acute Care (Cham: Springer International Publishing, 2015), pp. 17-26. https://doi.org/10.1007/978-3-319-10386-0_3. [Google Scholar]
- C. Rauch, Toward a mechanical control of drug delivery. On the relationship between Lipinski's 2nd rule and cytosolic pH changes in doxorubicin resistance levels in cancer cells: a comparison to published data. European Biophysics Journal, 38 (2009) 829-846. https://doi.org/10.1007/s00249-009-0429-x. [Google Scholar]
- L. Ridder, H. Wang, J. de Vlieg, & M. Wagener, Revisiting the Rule of Five on the Basis of Pharmacokinetic Data from Rat. ChemMedChem, 6 (2011) 1967-1970. https://doi.org/10.1002/cmdc.201100306. [CrossRef] [PubMed] [Google Scholar]
- R. Patil, S. Das, A. Stanley, L. Yadav, A. Sudhakar, & A. K. Varma, Optimized Hydrophobic Interactions and Hydrogen Bonding at the Target-Ligand Interface Leads the Pathways of Drug-Designing. PLoS ONE, 5 (2010) e12029. https://doi.org/10.1371/journal.pone.0012029. [Google Scholar]
- R. Mardianingrum, K. R. Bachtiar, S. Susanti, A. N. Aas Nuraisah, & R. Ruswanto, Studi In Silico Senyawa 1,4-Naphthalenedione-2-Ethyl-3-Hydroxy sebagai Antiinflamasi dan Antikanker Payudara. ALCHEMY Jurnal Penelitian Kimia, 17 (2021) 83. https://doi.org/10.20961/alchemy.17.L43979.83-95. [CrossRef] [Google Scholar]
- Qoonita., Fadhilah & H. Tjahjono. Daryono, Hubungan kuantitatif struktur dan aktivitas senyawa turunan 3-hal asilamino benzoilurea sebagai inhibitor pembentukan mikrotubulus. Acta Pharmaceutica Indonesia , 17 (2012) 76-82. [Google Scholar]
- L. Lins & R. Brasseur, The hydrophobic effect in protein folding. The FASEB Journal, 9 (1995) 535-540. https://doi.org/10.1096/fasebj.9.7.7737462. [Google Scholar]
- C. Ayyanna, S. Kuppusamy, & P. P. Kumar, An Overview of Pharmacological Activities and Beneficial Effects of 3-Hydroxyflavone. Macromolecular Symposia, 413 (2024). https://doi.org/10.1002/masy.202300078. [Google Scholar]
- S. A. de Souza Farias, K. S. da Costa, & J. B. L. Martins, Analysis of Conformational, Structural, Magnetic, and Electronic Properties Related to Antioxidant Activity: Revisiting Flavan, Anthocyanidin, Flavanone, Flavonol, Isoflavone, Flavone, and Flavan-3-ol. ACS Omega, 6 (2021) 8908-8918. https://doi.org/10.1021/acsomega.0c06156. [CrossRef] [PubMed] [Google Scholar]
- M. Biela, A. Kleinovâ, & E. Klein, Thermochemistry of antioxidant action of isoflavones and their deprotonated forms in aqueous solution: hydrogen or electron transfer? Acta Chimica Slovaca, 15 (2022) 29-35. https://doi.org/10.2478/acs-2022-0004. [CrossRef] [Google Scholar]
- Y. Qin, D. Song, S. Liao, J. Chen, M. Xu, Y. Su, H. Lian, H. Peng, L. Wei, K. Chen, J. Xu, J. Zhao, & Q. Liu, Isosinensetin alleviates estrogen deficiency-induced osteoporosis via suppressing ROS-mediated NF-kB/MAPKsignaling pathways. Biomedicine & Pharmacotherapy, 160 (2023) 114347. https://doi.org/10.1016/j.biopha.2023.114347. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.