Open Access
Issue |
BIO Web Conf.
Volume 183, 2025
International Conference on Life Sciences and Technology (ICoLiST 2024)
|
|
---|---|---|
Article Number | 01025 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/bioconf/202518301025 | |
Published online | 09 July 2025 |
- J. F. Fisher & S. Mobashery, Constructing and deconstructing the bacterial cell wall. Protein science, 29 (2020) 629-646. [Google Scholar]
- M. A. Abushaheen, A. J. Fatani, M. Alosaimi, W. Mansy, M. George, S. Acharya, S. Rathod, D. D. Divakar, C. Jhugroo, & S. Vellappally, Antimicrobial resistance, mechanisms and its clinical significance. Disease-a-Month, 66 (2020) 100971. [CrossRef] [PubMed] [Google Scholar]
- Y. Li, P. Xiao, Y. Wang, & Y. Hao, Mechanisms and control measures of mature biofilm resistance to antimicrobial agents in the clinical context. ACS omega, 5 (2020) 22684-22690. [Google Scholar]
- E. Bodendoerfer, M. Marchesi, F. Imkamp, P. Courvalin, E. C. Böttger, & S. Mancini, Co-occurrence of aminoglycoside and ß-lactam resistance mechanisms in aminoglycoside-non-susceptible Escherichia coli isolated in the Zurich area, Switzerland. International journal of antimicrobial agents, 56 (2020) 106019. [Google Scholar]
- B. Mlynarczyk-Bonikowska, C. Kowalewski, A. Krolak-Ulinska, & W. Marusza, Molecular mechanisms of drug resistance in Staphylococcus aureus. International journal of molecular sciences, 23 (2022) 8088. [Google Scholar]
- P. Nikolic & P. Mudgil, The cell wall, cell membrane and virulence factors of Staphylococcus aureus and their role in antibiotic resistance. Microorganisms, 11 (2023) 259. [Google Scholar]
- L. Poirel, J.-Y. Madec, A. Lupo, A.-K. Schink, N. Kieffer, P. Nordmann, & S. Schwarz, Antimicrobial Resistance in Escherichia coli. Microbiology Spectrum, 6 (2018). https://doi.org/10.1128/microbiolspec.ARBA-0026-2017. [Google Scholar]
- A. Pantosti, A. Sanchini, & M. Monaco, Mechanisms of Antibiotic Resistance in Staphylococcus Aureus. Future Microbiology, 2 (2007) 323-334. https://doi.org/10.2217/17460913.23.323. [Google Scholar]
- E. H. Haindongo, D. Ndakolo, M. Hedimbi, O. Vainio, A. Hakanen, & J. Vuopio, Antimicrobial resistance prevalence of Escherichia coli and Staphylococcus aureus amongst bacteremic patients in Africa: a systematic review. Journal of Global Antimicrobial Resistance, 32 (2023) 35-43. https://doi.org/10.1016/jjgar.2022.11.016. [Google Scholar]
- Y. Liu, L. Zhou, Y. Dong, R. Wang, Y. Pan, S. Zhuang, D. Liu, & J. Liu, Recent developments on MOF-based platforms for antibacterial therapy. RSC Medicinal Chemistry, 12 (2021) 915-928. https://doi.org/10.1039/D0MD00416B. [Google Scholar]
- F. Akbarzadeh, M. Motaghi, N. P. S. Chauhan, & G. Sargazi, A novel synthesis of new antibacterial nanostructures based on Zn-MOF compound: design, characterization and a high performance application. Heliyon, 6 (2020). [Google Scholar]
- K. AbouAitah, I. M. Higazy, A. Swiderska-Sroda, R. M. Abdelhameed, S. Gierlotka, T. A. Mohamed, U. Szalaj, & W. Lojkowski, Anti-inflammatory and antioxidant effects of nanoformulations composed of metal-organic frameworks delivering rutin and/or piperine natural agents. Drug Delivery, 28 (2021) 1478-1495. [CrossRef] [PubMed] [Google Scholar]
- Q. Gao, Q. Bai, C. Zheng, N. Sun, J. Liu, W. Chen, F. Hu, & T. Lu, Application of metal-organic framework in diagnosis and treatment of diabetes. Biomolecules, 12 (2022) 1240. [CrossRef] [PubMed] [Google Scholar]
- Y. Hu, H. Yang, R. Wang, & M. Duan, Fabricating Ag@MOF-5 nanoplates by the template of MOF-5 and evaluating its antibacterial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 626 (2021) 127093. https://doi.org/10.1016/j.colsurfa.2021.127093. [CrossRef] [Google Scholar]
- L. L. Zulfa, A. R. P. Hidayat, W. P. Utomo, R. Subagyo, E. N. Kusumawati, Y. Kusumawati, D. Hartanto, W. Widyastuti, & R. Ediati, Facile synthesis of Ni-ZIF-8 with improved photodegradation performance for methylene blue. Case Studies in Chemical and Environmental Engineering, 10 (2024) 100828. https://doi.org/10.1016/j.cscee.2024.100828. [CrossRef] [Google Scholar]
- S. Elmehrath, K. Ahsan, N. Munawar, A. Alzamly, H. L. Nguyen, & Y. Greish, Antibacterial efficacy of copper-based metal-organic frameworks against Escherichia coli and Lactobacillus. RSC advances, 14 (2024) 15821-15831. [Google Scholar]
- I. Dahlan, O. H. Keat, H. A. Aziz, & Y.-T. Hung, Synthesis and characterization of MOF-5 incorporated waste-derived siliceous materials for the removal of malachite green dye from aqueous solution. Sustainable chemistry and pharmacy, 31 (2023) 100954. [Google Scholar]
- D. Villarroel-Rocha, M. C. Bernini, J. J. Arroyo-Gömez, J. Villarroel-Rocha, & K. Sapag, Synthesis of MOF-5 using terephthalic acid as a ligand obtained from polyethylene terephthalate (PET) waste and its test in CO2 adsorption. Brazilian Journal of Chemical Engineering, 39 (2022) 949-959. [CrossRef] [Google Scholar]
- F. Tian, R. Weng, X. Huang, G. Chen, & Z. Huang, Fabrication of Silver-Doped UiO- 66-NH2 and Characterization of Antibacterial Materials. Coatings, 12 (2022) 1939. [CrossRef] [Google Scholar]
- M. Nasrabadi, M. A. Ghasemzadeh, & M. R. Z. Monfared, The preparation and characterization of UiO-66 metal-organic frameworks for the delivery of the drug ciprofloxacin and an evaluation of their antibacterial activities. New Journal of Chemistry, 43 (2019) 16033-16040. [Google Scholar]
- X. Lin, W. Zeng, Y. Chen, T. Su, Q. Zhong, L. Gong, & Y. Liu, UiO-66-derived porous-carbon adsorbents: synthesis, characterization and tetracycline adsorption performance. Carbon Letters, 32 (2022) 875-884. [CrossRef] [Google Scholar]
- Y. Hu, H. Yang, R. Wang, & M. Duan, Fabricating Ag@ MOF-5 nanoplates by the template of MOF-5 and evaluating its antibacterial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 626 (2021) 127093. [CrossRef] [Google Scholar]
- G. Kumar & D. T. Masram, Sustainable synthesis of MOF-5@ GO nanocomposites for efficient removal of rhodamine B from water. ACS omega, 6 (2021) 9587-9599. [Google Scholar]
- E. Burgaz, A. Erciyes, M. Andac, & O. Andac, Synthesis and characterization of nano-sized metal organic framework-5 (MOF-5) by using consecutive combination of ultrasound and microwave irradiation methods. Inorganica Chimica Acta, 485 (2019) 118-124. [Google Scholar]
- M. Arjmandi, A. Altaee, A. Arjmandi, M. P. Chenar, M. Peyravi, & M. Jahanshahi, A facile and efficient approach to increase the magnetic property of MOF-5. Solid State Sciences, 106 (2020) 106292. [Google Scholar]
- Y. Liu, L. Zhou, Y. Dong, R. Wang, Y. Pan, S. Zhuang, D. Liu, & J. Liu, Recent developments on MOF-based platforms for antibacterial therapy. RSC Medicinal Chemistry, 12 (2021) 915-928. [Google Scholar]
- S. Abass, S. Zahiruddin, A. Ali, M. Irfan, B. Jan, Q. M. R. Haq, S. A. Husain, & S. Ahmad, Development of synergy-based combination of methanolic extract of Andrographis paniculata and Berberis aristata against E. coli and S. aureus. Current Microbiology, 79 (2022) 223. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.