Open Access
Issue |
BIO Web Conf.
Volume 185, 2025
The International Symposium on Marine and Fisheries (SYMARFISH 2025)
|
|
---|---|---|
Article Number | 08005 | |
Number of page(s) | 15 | |
Section | Sustainable Aquaculture and Fisheries | |
DOI | https://doi.org/10.1051/bioconf/202518508005 | |
Published online | 14 August 2025 |
- T. Dey, P. K. Ghosh, S. K. Nandi, G. Chowdhury, S. Mian, and M. S. Uddin, “Review on n-3 HUFA and Live Food Organism for Marine Fish Larvae Nutrition,” Am. J. Agric. Sci. Eng. Technol., vol. 6, no. 3, pp. 88–102, Nov. 2022, doi: 10.54536/ajaset.v6i3.770. [Google Scholar]
- C. Hinchliffe, P. Pepin, I. M. Suthers, and D. S. Falster, “A novel approach for estimating growth and mortality of fish larvae,” ICES Journal of Marine Science, vol. 78, no. 8, pp. 2684–2699, Oct. 2021, doi: 10.1093/icesjms/fsab161. [Google Scholar]
- Indriani et al., “The Pengaruh Pemberian Ragi Roti dengan Dosis yang Berbeda Terhadap Kepadatan Rotifera (Brachionus plicatilis),” siganus, vol. 3, no. 2, pp. 229–235, Apr. 2022, doi: 10.31605/siganus.v3i2.1503. [Google Scholar]
- A. Bera et al., “Effect of tank colour on foraging capacity, growth and survival of milkfish (Chanos chanos) larvae,” Aquaculture, vol. 512, p. 734347, Oct. 2019, doi: 10.1016/j.aquaculture.2019.734347. [CrossRef] [Google Scholar]
- A. N. Asnur, M. I. Djawad, and Syafiuddin, “MAPPING OF CRITICAL PERIOD AND NATURAL FEED NEED BASED ON OXYGEN CONSUMPTION DATA ON MILKFISH LARVAE CHANOS CHANOS (FORSSKÅL, 1775) USING ARTIFICIAL INTELLIGENCE,” European Chemical Bulletin, vol. 12, no. 5, pp. 5971–5981, 2023, doi: 10.31838/ecb/2023.12.5.462. [Google Scholar]
- A. Bachri, “Freshwater Monitoring System Design In Real-Time For Fish Cultivation,” Int. J. Multidiscipline. Approach. Res. Sci., vol. 2, no. 01, pp. 362–371, Dec. 2023, doi: 10.59653/ijmars.v2i01.483. [Google Scholar]
- S. Saha, R. Hasan Rajib, and S. Kabir, “IoT Based Automated Fish Farm Aquaculture Monitoring System,” in 2018 International Conference on Innovations in Science, Engineering and Technology (ICISET), Chittagong, Bangladesh: IEEE, Oct. 2018, pp. 201–206. doi: 10.1109/iciset.2018.8745543. [Google Scholar]
- M. G. B. Palconit et al., “Development of IoT-based Fish Tank Monitoring System,” in 2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Manila, Philippines: IEEE, Nov. 2021, pp. 1–6. doi: 10.1109/hnicem54116.2021.9731950. [Google Scholar]
- A. Yadav, M. T. Noori, A. Biswas, and B. Min, “A Concise Review on the Recent Developments in the Internet of Things (IoT)-Based Smart Aquaculture Practices,” Reviews in Fisheries Science & Aquaculture, vol. 31, no. 1, pp. 103–118, Jan. 2023, doi: 10.1080/23308249.2022.2090228. [Google Scholar]
- L. E. Ailloud and J. M. Hoenig, “A general theory of age-length keys: combining the forward and inverse keys to estimate age composition from incomplete data,” ICES Journal of Marine Science, vol. 76, no. 6, pp. 1515–1523, Dec. 2019, doi: 10.1093/icesjms/fsz072. [Google Scholar]
- C. P. Kempes, P. M. Van Bodegom, D. Wolpert, E. Libby, J. Amend, and T. Hoehler, “Drivers of Bacterial Maintenance and Minimal Energy Requirements,” Front. Microbiol., vol. 8, Jan. 2017, doi: 10.3389/fmicb.2017.00031. [Google Scholar]
- C. Chaumontet et al., “Low-protein and methionine, high-starch diets increase energy intake and expenditure, increase FGF21, decrease IGF-1, and have little effect on adiposity in mice,” American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol. 316, no. 5, pp. R486–R501, May 2019, doi: 10.1152/ajpregu.00316.2018. [Google Scholar]
- D. R. Barneche and A. P. Allen, “The energetics of fish growth and how it constrains food‐web trophic structure,” Ecology Letters, vol. 21, no. 6, pp. 836–844, June 2018, doi: 10.1111/ele.12947. [Google Scholar]
- J. Qiang et al., “The effects of temperature and dissolved oxygen on the growth, survival and oxidative capacity of newly hatched hybrid yellow catfish larvae (Tachysurus fulvidraco♀ × Pseudobagrus vachellii♂),” Journal of Thermal Biology, vol. 86, p. 102436, Dec. 2019, doi: 10.1016/j.jtherbio.2019.102436. [Google Scholar]
- F. V. Zohoori, “Chapter 1: Nutrition and Diet,” in Monographs in Oral Science, vol. 28, F. V. Zohoori and R. M. Duckworth, Eds., S. Karger AG, 2020, pp. 1–13. doi: 10.1159/000455365. [Google Scholar]
- A. Tariq et al., “Regulation of Metabolites by Nutrients in Plants,” in Plant Ionomics, 1st ed., V. P. Singh and M. H. Siddiqui, Eds., Wiley, 2023, pp. 1–18. doi: 10.1002/9781119803041.ch1. [Google Scholar]
- S. Yılmaz, S. Ergün, M. Yiğit, and E. Yılmaz, “An Extensive Review on the Use of Feed Additives Against Fish Diseases and Improvement of Health Status of Fish in Turkish Aquaculture Sector,” Aquaculture Studies, vol. 22, no. 3, Jan. 2022, doi: 10.4194/AQUAST710. [Google Scholar]
- L. Jahangiri, A. P. Shinn, J. Pratoomyot, and G. Bastos Gomes, “Unveiling associations between ciliate parasites and bacterial microbiomes under warm‐water fish farm conditions – a review,” Reviews in Aquaculture, vol. 13, no. 2, pp. 1097–1118, Mar. 2021, doi: 10.1111/raq.12514. [Google Scholar]
- H. Q. Tran, H. Van Doan, and V. Stejskal, “Does dietary Tenebrio molitor affect swimming capacity, energy use, and physiological responses of European perch Perca fluviatilis?,” Aquaculture, vol. 539, p. 736610, June 2021, doi: 10.1016/j.aquaculture.2021.736610. [Google Scholar]
- R. Baena-Navarro, Y. Carriazo-Regino, F. Torres-Hoyos, and J. Pinedo-López, “Intelligent Prediction and Continuous Monitoring of Water Quality in Aquaculture: Integration of Machine Learning and Internet of Things for Sustainable Management,” Water, vol. 17, no. 1, p. 82, Jan. 2025, doi: 10.3390/w17010082. [Google Scholar]
- A. Bachri, “Freshwater Monitoring System Design In Real-Time For Fish Cultivation,” Int. J. Multidiscipline. Approach. Res. Sci., vol. 2, no. 01, pp. 362–371, Dec. 2023, doi: 10.59653/ijmars.v2i01.483. [Google Scholar]
- M. Manju, V. Karthik, S. Hariharan, and B. Sreekar, “Real time monitoring of the environmental parameters of an aquaponic system based on Internet of Things,” in 2017 Third International Conference on Science Technology Engineering & Management (ICONSTEM), Chennai: IEEE, Mar. 2017, pp. 943–948. doi: 10.1109/iconstem.2017.8261342. [Google Scholar]
- C.-H. Chang, J.-J. Huang, C.-Y. Yeh, C.-H. Tang, L.-Y. Hwang, and T.-H. Lee, “Salinity Effects on Strategies of Glycogen Utilization in Livers of Euryhaline Milkfish (Chanos chanos) under Hypothermal Stress,” Front. Physiol., vol. 9, p. 81, Feb. 2018, doi: 10.3389/fphys.2018.00081. [Google Scholar]
- K. Chary, D. Brigolin, and M. D. Callier, “Farm‐scale models in fish aquaculture – An overview of methods and applications,” Reviews in Aquaculture, vol. 14, no. 4, pp. 2122–2157, Sept. 2022, doi: 10.1111/raq.12695. [Google Scholar]
- T. Kelly et al., “Low Oxygen Stress During Early Development Influences Regulation of Hypoxia-Response Genes in Farmed Atlantic Salmon ( Salmo salar ),” G3 Genes|Genomes|Genetics, vol. 10, no. 9, pp. 3179–3188, Sept. 2020, doi: 10.1534/g3.120.401459. [Google Scholar]
- T. Kelly et al., “Low Oxygen Stress During Early Development Influences Regulation of Hypoxia-Response Genes in Farmed Atlantic Salmon ( Salmo salar ),” G3 Genes|Genomes|Genetics, vol. 10, no. 9, pp. 3179–3188, Sept. 2020, doi: 10.1534/g3.120.401459. [Google Scholar]
- S. Wang, C. G. Carter, Q. P. Fitzgibbon, and G. G. Smith, “Respiratory quotient and the stoichiometric approach to investigating metabolic energy substrate use in aquatic ectotherms,” Reviews in Aquaculture, vol. 13, no. 3, pp. 1255–1284, June 2021, doi: 10.1111/raq.12522. [Google Scholar]
- G. Ganesh et al., “Evaluation of water quality parameters in grow out phase of brackish water fish Chanos chanos (Milk fish) in floating net cages,” 2020. [Google Scholar]
- B. M. Chiste, N. A. Takeshita, C. C. Mattioli, C. M. Jonsson, R. M. Barizon, and H. Hisano, “Risk assessment and acute toxicological effects of atrazine on Nile tilapia larvae after stress,” Journal of Environmental Science and Health, Part B, vol. 56, no. 1, pp. 23–29, Jan. 2021, doi: 10.1080/03601234.2020.1831863. [Google Scholar]
- M. R. Alam et al., “Salinity intrusion affects early development of freshwater aquaculture species pabda, Ompok pabda,” Aquaculture Reports, vol. 18, p. 100476, Nov. 2020, doi: 10.1016/j.aqrep.2020.100476. [Google Scholar]
- R. Baena-Navarro, Y. Carriazo-Regino, F. Torres-Hoyos, and J. Pinedo-López, “Intelligent Prediction and Continuous Monitoring of Water Quality in Aquaculture: Integration of Machine Learning and Internet of Things for Sustainable Management,” Water, vol. 17, no. 1, p. 82, Jan. 2025, doi: 10.3390/w17010082. [Google Scholar]
- A. Bachri, “Freshwater Monitoring System Design In Real-Time For Fish Cultivation,” Int. J. Multidiscipline. Approach. Res. Sci., vol. 2, no. 01, pp. 362–371, Dec. 2023, doi: 10.59653/ijmars.v2i01.483. [Google Scholar]
- A. Yadav, M. T. Noori, A. Biswas, and B. Min, “A Concise Review on the Recent Developments in the Internet of Things (IoT)-Based Smart Aquaculture Practices,” Reviews in Fisheries Science & Aquaculture, vol. 31, no. 1, pp. 103–118, Jan. 2023, doi: 10.1080/23308249.2022.2090228. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.