Open Access
| Issue |
BIO Web Conf.
Volume 192, 2025
6th International Conference on Smart and Innovative Agriculture (ICoSIA 2025)
|
|
|---|---|---|
| Article Number | 06003 | |
| Number of page(s) | 6 | |
| Section | Plant and Animal Biotechnology | |
| DOI | https://doi.org/10.1051/bioconf/202519206003 | |
| Published online | 24 October 2025 | |
- M. Adhab, N. Alkuwaiti. Geminiviruses occurrence in the middle east and their impact on agriculture in Iraq. In Geminivirus: Detection, Diagnosis and Management, 171-185. Academic Press (2022). https://doi.org/10.1016/B978-0-323-90587-9.00021-3 [Google Scholar]
- H. Obaid, M. Adhab. Outbreak of tobamoviruses and potexviruses associated with disease epidemics in tomato production area of Iraq. Iraqi J. of Agric. Sci., 56(Special), 237-246 (2025). https://doi.org/10.36103/bnvh7n83 [Google Scholar]
- Sastry KS. Seed-borne plant virus diseases. Springer science & business media; (2013). https://doi.org/10.1007/978-81-322-0813-6 [Google Scholar]
- D. Mohammed, M. Adhab, N. Al-Kuwaiti, Molecular characterization of viruses associated to leaf curl disease complex on zucchini squash in Iraq reveals Deng primer set could distinguish between New and Old World Begomoviruses. Anais da Academia Brasileira de Ciências, 93: e20210050 (2021). https://doi.org/10.1590/0001-3765202120210050 [Google Scholar]
- N. Luria, E. Smith, V. Reingold, I. Bekelman, M. Lapidot, I. Levin, N. Elad. A new Israeli Tobamovirus isolate infects tomato plants harboring Tm-22 resistance genes. PloS one 12, 1: e0170429 (2017). https://doi.org/10.1371/journal.pone.0170429 [Google Scholar]
- N. Levitzky, E. Smith, O. Lachman, N. Luria, Y. Mizrahi, H. Bakelman, N. Sela, O. Laskar, E. Milrot, A. Dombrovsky. The bumblebee Bombus terrestris carries a primary inoculum of Tomato brown rugose fruit virus contributing to disease spread in tomatoes. PloS one 14, 1: e0210871 (2019). https://doi.org/10.1371/journal.pone.0210871 [Google Scholar]
- F. Lanfermeijer, J. Warmink, J. Hille. The products of the broken Tm-2 and the durable Tm-22 resistance genes from tomato differ in four amino acids. J. Exp. botany 56, 421: 2925-2933 (2005). https://doi.org/10.1093/jxb/eri288 [Google Scholar]
- C. Alcaide, M. Aranda. Determinants of persistent patterns of Pepino mosaic virus mixed infections. Front. Microbiol. 12: 694492 (2021). https://doi.org/10.3389/fmicb.2021.694492 [Google Scholar]
- J. Shipp, R. Buitenhuis, L. Stobbs, K. Wang, W. Kim, G. Ferguson. Vectoring of Pepino mosaic virus by bumble‐bees in tomato greenhouses. Ann. Appl. Biol. 153: 149-155 (2008). https://doi.org/10.1111/j.1744-7348.2008.00245.x [Google Scholar]
- S. Kumar, S. Maurya. Innovative diagnostic tools for plant pathogenic virus. In Innovative Approaches in Diagnosis and Management of Crop Diseases, pp. 101-165. Apple Academic Press, (2021). https://doi.org/10.1201/9781003187608 [Google Scholar]
- H. Massumi, M. Shaabanian, A. Pour, J. Heydarnejad, H. Rahimian. Incidence of viruses infecting tomato and their natural hosts in the southeast and central regions of Iran. Plant dis. 93: 67-72 (2009). https://doi.org/10.1094/PDIS-93-1-0067 [Google Scholar]
- S. Davino, A. Caruso, S. Bertacca, S. Barone, S. Panno. Tomato brown rugose fruit virus: Seed transmission rate and efficacy of different seed disinfection treatments. Plants 9:.1615 (2020). https://doi.org/10.3390/plants9111615 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

