Issue |
BIO Web Conf.
Volume 17, 2020
International Scientific-Practical Conference “Agriculture and Food Security: Technology, Innovation, Markets, Human Resources” (FIES 2019)
|
|
---|---|---|
Article Number | 00200 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.1051/bioconf/20201700200 | |
Published online | 28 February 2020 |
Application of finite elements of various dimensions in strength calculations of thin-wall constructions of agro-industrial complex
1
Volgograd State Agrarian University, 400002 Volgograd, Russia
2
Lomonosov Moscow State University, 119991 Moscow, Russia
* Corresponding author: Klotchkov@bk.ru
The article presents a comparative analysis of the effectiveness of the use of finite elements of various dimensions in the study of the stress-strain state (SSS) of objects of the agro-industrial complex (AIC). To determine the strength parameters of the AIC objects, which can be attributed to the class of thinwalled, it is proposed to use a two-dimensional finite element in the form of a fragment of the middle surface of a triangular shape with nodes at its vertices. To improve the compatibility of a two-dimensional finite element at the boundaries of adjacent elements, it is proposed to use the Lagrange multipliers introduced in additional nodes located in the middle of the sides of the triangular fragment as additional unknowns. It is proposed to use a three-dimensional finite element in the form of a prism with triangular bases to study the SSS of agricultural objects of medium thickness and thick-walled. To improve the compatibility of the prismatic element, Lagrange multipliers in the middle of the sides of the upper and lower bases are also used. On the example of calculating a fragment of a cylindrical pipeline rigidly clamped at the ends loaded with internal pressure, the effectiveness of the developed two-dimensional and three-dimensional finite elements with Lagrange multipliers was proved. The validity of the use of a twodimensional element for researching the SSS of agricultural objects belonging to the class of thin-walled was proved.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.