Issue |
BIO Web Conf.
Volume 44, 2022
CO.NA.VI. 2020 – 8° Convegno Nazionale di Viticoltura
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 6 | |
Section | Physiology, Ecophysiology and “Omic” Analyses | |
DOI | https://doi.org/10.1051/bioconf/20224401003 | |
Published online | 31 January 2022 |
Foliar application of kaolin and zeolites to adapt the adverse effects of climate change in Vitis vinifera L. cv. Sangiovese
Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), Viale Fanin, 46, 40127 (BO)
* Corresponding author: gabriele.valentini4@unibo.it
One of the first effects of climate change in wine-growing areas is the advancement of phenological stages, especially concerning early berry ripening. In this condition, the decoupling between technological and phenolic maturity often occurs. Anthocyanins in red grapes are among the compounds that mostly contribute to phenolic maturity. However, their accumulation in the grape berries is known to be impaired by high temperatures. Therefore, this study aims to evaluate the efficacy of mineral-based compounds treatments with kaolin and zeolite, based on chabasite, on the enhancement of anthocyanins accumulation, also at the molecular level, analysing the gene expressions along the flavonoid biosynthesis pathway during ripening of Sangiovese berries. In addition, the temperature of berries and grape leaves, vine water status, leaf photosynthetic efficiency, total soluble solids, titratable acidity and pH were measured throughout the growing season. Hence, in the current study, it has been demonstrated the efficacy of kaolin and zeolite treatments not only in lowering the daily maximum grape berries temperature but also in the improvement of grapes anthocyanins accumulation correlated with the enhancement of expression of those genes involved in their biosynthesis pathway. Moreover, treatments had no significant effect on productive parameters.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.