Issue |
BIO Web Conf.
Volume 105, 2024
IV International Conference on Agricultural Engineering and Green Infrastructure for Sustainable Development (AEGISD-IV 2024)
|
|
---|---|---|
Article Number | 05005 | |
Number of page(s) | 9 | |
Section | Biotechnology for Sustainable Soil Management, Geotechnical Engineering and Natural Resource Conservation | |
DOI | https://doi.org/10.1051/bioconf/202410505005 | |
Published online | 26 April 2024 |
Examining laminar, non-stationary viscoelastic fluid flow between two parallel planes
1 Urgench State University, Urgench, Republic of Uzbekistan
2 “Tashkent institute of irrigation and agriculture mechanization engineers” National research university, Tashkent, Republic of Uzbekistan
* Corresponding author: Amirbek_beg@mail.ru
The generalized Maxwell model is used to handle problems involving the unsteady flow of a viscoelastic fluid in a flat channel under the effect of a constant pressure gradient. Formulas for fluid flow, velocity distribution, and other hydrodynamic characteristics were found. Transient processes during unsteady flow of a viscoelastic fluid in a flat channel are investigated based on the discovered formulas. The analysis’s conclusions demonstrated that, at small Debord number values, the procedures of changing a viscoelastic fluid’s properties from an unstable to a stationary state essentially don’t differ from those of a Newtonian fluid. Exceeding the Debord number relatively unity, it has been established that the process of transition of a viscoelastic fluid from an unsteady state to a stationary state is of a wave nature, in contrast to the transition process of a Newtonian fluid, and the transition time is several times longer than that of a Newtonian fluid. It was also discovered that perturbed processes can arise during the transition. These disturbances occurring in unsteady flows of a viscoelastic fluid can be stabilized by mixing the Newtonian fluid within it. The implementation of this property is important in preventing technical failures or malfunctions.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.