Open Access
Issue
BIO Web of Conferences
Volume 7, 2016
39th World Congress of Vine and Wine
Article Number 02029
Number of page(s) 4
Section Oenology
DOI https://doi.org/10.1051/bioconf/20160702029
Published online 26 October 2016
  • Westphalen, S. L., and J. R. T. Maluf. Caracterização das áreas bioclimáticas para o cultivo de Vitis vinifera L.: regiões da Serra do Nordeste e Planalto do Estado do Rio Grande do Sul. Embrapa Comunicação para Transferência de Tecnologia/Bento Gonçalves (2000)
  • Amorim, L., et al. “Doenças da videira (Vitis spp.).” Kimati, H.; Amorim, L.; Rezende, JAM; Bergamin Filho, A, 639–651 (2005)
  • Sônego, O. R., L. da, R. Garrido, and A. Grigoletti Júnior. Principais doenças fúngicas da videira no Sul do Brasil. Vol. 38. Embrapa Uva e Vinho (2005)
  • Madden, L. V., et al. “Evaluation of a disease warning system for downy mildew of grapes.” Plant Disease. 84.5, 549–554 (2000)
  • Chadha, K. L., and S. D. Shikhamany. The grape: improvement, production and post-harvest management. Malhotra Publishing House (1999)
  • Komárek, Michael, et al. “Contamination of vineyard soils with fungicides: a review of environmental and toxicological aspects.” Environment international 36.1, 138–151 (2010)
  • Boubals, D. “Copper in the control of grapes in France.” Vignevini, 28.5, 45–47 (2001)
  • Ferreira, J. C., Strecht, A., Ribeiro, J. R., Soeiro, A., & Cotrim, G. Manual de Agricultura Biologica. Lisboa: Agrobio (1998)
  • Morando, A., Morando, P., Bevione, D., & Lembo, S. Vite e rame: l'impiego del rame fra pregi e difetti; Il controllo della peronospora in vigneto con rameici a dosaggi ridotti. Vignevini, 24(7–8), 53–57 (1997)
  • Devez A, Gomez E, Gilbin R, Elbaz-Poulichet F, Persin F, Andrieux P, et al. Assessment of copper bioavailability and toxicity in vineyard runoff waters by DPASV and algal bioassay. Sci Total Environ: 348, 82–92 (2005) [CrossRef]
  • Brandolini, V. P., Tadeschi, A., Capece, A., Maietti, D., Mazzotta, G., Salzano, A. Paparella and P. Romano. Saccharomyces cerevisiae wine strains differing in copper resistance exhibit different capability to reduce copper content in wine. World Journal of Microbiology and Biotechnology, 18, 499–503 (2002) [CrossRef]
  • Chen, C., Wen, D., & Wang, J. Cellular surface characteristics of Saccharomyces cerevisiae before and after Ag(I) biosorption. Bioresource Technology, 156, 380–383 (2014) [CrossRef]
  • Vasudevan, P., Padmavathy, V., & Dhingra, S. Kinetics of biosorption of cadmium on baker's yeast. Bioresource Technology, 89, 281–287 (2003) [CrossRef]
  • Suh, J., Kim, D., Yun, J., Song, S., Kim, D., Yun, J., et al. Process of Pb2+ accumulation in Saccharomyces cerevisiae. Biotechnology Letters, 20, 153–156 (1998) [CrossRef]
  • Brady, D., & Duncan, J. Bioaccumulation of metal cations by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 41, 149–154 (1994) [CrossRef]
  • García-Esparza, M. A., Capri, E., Pirzadeh, P., & Trevisan, M. Copper content of grape and wine from Italian farms. Food Additives & Contaminants, 23, 274–280 (2006) [CrossRef]
  • Nel, A., Krause, M. and Khelawanlall, N. A Guide for the Control of Plant Diseases. (National Department of Agriculture, Republic of South Africa), 2 (2003)
  • Provenzano, M. R., El Bilali, H., Simeone, V., Baser, N., Mondelli, D., & Cesari, G. Copper contents in grapes and wines from a Mediterranean organic vineyard. Food Chemistry, 122(4), 1338–1343 (2010) [CrossRef]
  • Amerine, Maynard Andrew. The technology of wine making, 4, 794 (1980)
  • Wurdig, G. “Methodes d'elimination des metaux dans le mout et le vin.” Office Int Vigne Vin Bull (1971)
  • Chervaneva, V. V., S. T. Tiurin, and I. N. Okolelov. “On iron and copper content in wines.” Vinodelie Vinogradarstvo Sssr (1971)
  • Miele, A. Teores de manganês e de cobre no mosto das uvas ‘Isabel' e ‘Concord'. Pesquisa Agropecuária Brasileira, 22 (09–10), 897–901 (1987)
  • Manfroi, L., Miele, A., Rizzon, L. A., & Barradas, C. I. Composição química do mosto da uva Cabernet Franc conduzida no sistema lira aberta. Ciênc. Agrotec., Lavras, 30(4), 787–792 (2006) [CrossRef]
  • Debastiani, G., Leite, A. C., Junior, C. A. W., & Boelhouwer, D. I. Cultura da Uva, Produção e Comercialização de Vinhos no Brasil: Origem, Realidades e Desafios. Revista Cesumar–Ciências Humanas e Sociais Aplicadas, 20(2) (2016)
  • Amorim, L., Kuniyuki, H., Kimati, H., Amorim, L., Rezende, J. A. M., Bergamin Filho, A., & Camargo, L. E. A. Doenças da videira (Vitis spp.). Kimati, H.; Amorim, L.; Rezende, JAM; Bergamin Filho, A, 639–651 (2005)
  • Chaves López, C., Boselli, E., Piva, A., Ndaghijimana, M., Paparella, A., Suzzi, G., & Mastrocola, D. Influence of quinoxyfen residues on Saccharomyces cerevisiae fermentation of grape musts. Food Technology and Biotechnology, 42(2), 89–97 (2004)
  • Zwietering, M. H., Jongenburger, I., Rombouts, F. M., & van't Riet, K. Modelling of the bacterial growth curve. Applied and Environmental Microbiology, 56, 1875–1881 (1990)
  • Rinaldi, S.; Tiano, A.; Serban, S.; Pittson, R.; Lajic, Z.; Politi, H.; El Murr, N.; Armani, A.; Cavazza, A. Monitoring wine quality and fermentation kinetics with innovative technologies. In: XXIX Congreso mundial de la viña y el vino: 4a asamblea general de la O.I.V.. Madrid: Ministerio de agricultura, pesca y alimentación: p. 10 (2006)
  • O'Neill, B., van Heeswijck, T., & Muhlack, R. (2011). Models for predicting wine fermentation kinetics. Chemeca 2011: Engineering a Better World: Sydney Hilton Hotel, NSW, Australia, 18–21 September 2011 (1956)
  • Huang, L. Integrated Pathogen Modeling Program. USDA Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA (2013)
  • Silva, F. A. S. ASSISTAT-Assistência Estatística, versão 7.6. Universidade Federal de Campina Grande-PB (2013)
  • Ferreira, J., Toit, M., & Toit, W. D. The effects of copper and high sugar concentrations on growth, fermentation efficiency and volatile acidity production of different commercial wine yeast strains. Australian Journal of Grape and Wine Research, 12(1), 50–56 (2006) [CrossRef]
  • Cavazza, A., Guzzon, R., Malacarne, M., & Larcher, R. The influence of the copper content in grape must on alcoholic fermentation kinetics and wine quality. A survey on the performance of 50 commercial Active Dry Yeasts. VITIS-Journal of Grapevine Research, 52(3), 149 (2015)
  • Sun, X., Liu, L., Zhao, Y., Ma, T., Zhao, F., Huang, W., & Zhan, J. Effect of copper stress on growth characteristics and fermentation properties of Saccharomyces cerevisiae and the pathway of copper adsorption during wine fermentation. Food chemistry, 192, 43–52 (2016) [CrossRef]
  • Brandolini, V., Tedeschi, P., Capece, A., Maietti, A., Mazzotta, D., Salzano, G., ... & Romano, P. Saccharomyces cerevisiae wine strains differing in copper resistance exhibit different capability to reduce copper content in wine. World Journal of Microbiology and Biotechnology, 18(6), 499–503 (2002) [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.