Open Access
Issue |
BIO Web of Conferences
Volume 7, 2016
39th World Congress of Vine and Wine
|
|
---|---|---|
Article Number | 02029 | |
Number of page(s) | 4 | |
Section | Oenology | |
DOI | https://doi.org/10.1051/bioconf/20160702029 | |
Published online | 26 October 2016 |
- Westphalen, S. L., and J. R. T. Maluf. Caracterização das áreas bioclimáticas para o cultivo de Vitis vinifera L.: regiões da Serra do Nordeste e Planalto do Estado do Rio Grande do Sul. Embrapa Comunicação para Transferência de Tecnologia/Bento Gonçalves (2000) [Google Scholar]
- Amorim, L., et al. “Doenças da videira (Vitis spp.).” Kimati, H.; Amorim, L.; Rezende, JAM; Bergamin Filho, A, 639–651 (2005) [Google Scholar]
- Sônego, O. R., L. da, R. Garrido, and A. Grigoletti Júnior. Principais doenças fúngicas da videira no Sul do Brasil. Vol. 38. Embrapa Uva e Vinho (2005) [Google Scholar]
- Madden, L. V., et al. “Evaluation of a disease warning system for downy mildew of grapes.” Plant Disease. 84.5, 549–554 (2000) [Google Scholar]
- Chadha, K. L., and S. D. Shikhamany. The grape: improvement, production and post-harvest management. Malhotra Publishing House (1999) [Google Scholar]
- Komárek, Michael, et al. “Contamination of vineyard soils with fungicides: a review of environmental and toxicological aspects.” Environment international 36.1, 138–151 (2010) [Google Scholar]
- Boubals, D. “Copper in the control of grapes in France.” Vignevini, 28.5, 45–47 (2001) [Google Scholar]
- Ferreira, J. C., Strecht, A., Ribeiro, J. R., Soeiro, A., & Cotrim, G. Manual de Agricultura Biologica. Lisboa: Agrobio (1998) [Google Scholar]
- Morando, A., Morando, P., Bevione, D., & Lembo, S. Vite e rame: l'impiego del rame fra pregi e difetti; Il controllo della peronospora in vigneto con rameici a dosaggi ridotti. Vignevini, 24(7–8), 53–57 (1997) [Google Scholar]
- Devez A, Gomez E, Gilbin R, Elbaz-Poulichet F, Persin F, Andrieux P, et al. Assessment of copper bioavailability and toxicity in vineyard runoff waters by DPASV and algal bioassay. Sci Total Environ: 348, 82–92 (2005) [CrossRef] [Google Scholar]
- Brandolini, V. P., Tadeschi, A., Capece, A., Maietti, D., Mazzotta, G., Salzano, A. Paparella and P. Romano. Saccharomyces cerevisiae wine strains differing in copper resistance exhibit different capability to reduce copper content in wine. World Journal of Microbiology and Biotechnology, 18, 499–503 (2002) [CrossRef] [Google Scholar]
- Chen, C., Wen, D., & Wang, J. Cellular surface characteristics of Saccharomyces cerevisiae before and after Ag(I) biosorption. Bioresource Technology, 156, 380–383 (2014) [CrossRef] [Google Scholar]
- Vasudevan, P., Padmavathy, V., & Dhingra, S. Kinetics of biosorption of cadmium on baker's yeast. Bioresource Technology, 89, 281–287 (2003) [CrossRef] [Google Scholar]
- Suh, J., Kim, D., Yun, J., Song, S., Kim, D., Yun, J., et al. Process of Pb2+ accumulation in Saccharomyces cerevisiae. Biotechnology Letters, 20, 153–156 (1998) [CrossRef] [Google Scholar]
- Brady, D., & Duncan, J. Bioaccumulation of metal cations by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 41, 149–154 (1994) [CrossRef] [Google Scholar]
- García-Esparza, M. A., Capri, E., Pirzadeh, P., & Trevisan, M. Copper content of grape and wine from Italian farms. Food Additives & Contaminants, 23, 274–280 (2006) [CrossRef] [Google Scholar]
- Nel, A., Krause, M. and Khelawanlall, N. A Guide for the Control of Plant Diseases. (National Department of Agriculture, Republic of South Africa), 2 (2003) [Google Scholar]
- Provenzano, M. R., El Bilali, H., Simeone, V., Baser, N., Mondelli, D., & Cesari, G. Copper contents in grapes and wines from a Mediterranean organic vineyard. Food Chemistry, 122(4), 1338–1343 (2010) [CrossRef] [Google Scholar]
- Amerine, Maynard Andrew. The technology of wine making, 4, 794 (1980) [Google Scholar]
- Wurdig, G. “Methodes d'elimination des metaux dans le mout et le vin.” Office Int Vigne Vin Bull (1971) [Google Scholar]
- Chervaneva, V. V., S. T. Tiurin, and I. N. Okolelov. “On iron and copper content in wines.” Vinodelie Vinogradarstvo Sssr (1971) [Google Scholar]
- Miele, A. Teores de manganês e de cobre no mosto das uvas ‘Isabel' e ‘Concord'. Pesquisa Agropecuária Brasileira, 22 (09–10), 897–901 (1987) [Google Scholar]
- Manfroi, L., Miele, A., Rizzon, L. A., & Barradas, C. I. Composição química do mosto da uva Cabernet Franc conduzida no sistema lira aberta. Ciênc. Agrotec., Lavras, 30(4), 787–792 (2006) [CrossRef] [Google Scholar]
- Debastiani, G., Leite, A. C., Junior, C. A. W., & Boelhouwer, D. I. Cultura da Uva, Produção e Comercialização de Vinhos no Brasil: Origem, Realidades e Desafios. Revista Cesumar–Ciências Humanas e Sociais Aplicadas, 20(2) (2016) [Google Scholar]
- Amorim, L., Kuniyuki, H., Kimati, H., Amorim, L., Rezende, J. A. M., Bergamin Filho, A., & Camargo, L. E. A. Doenças da videira (Vitis spp.). Kimati, H.; Amorim, L.; Rezende, JAM; Bergamin Filho, A, 639–651 (2005) [Google Scholar]
- Chaves López, C., Boselli, E., Piva, A., Ndaghijimana, M., Paparella, A., Suzzi, G., & Mastrocola, D. Influence of quinoxyfen residues on Saccharomyces cerevisiae fermentation of grape musts. Food Technology and Biotechnology, 42(2), 89–97 (2004) [Google Scholar]
- Zwietering, M. H., Jongenburger, I., Rombouts, F. M., & van't Riet, K. Modelling of the bacterial growth curve. Applied and Environmental Microbiology, 56, 1875–1881 (1990) [Google Scholar]
- Rinaldi, S.; Tiano, A.; Serban, S.; Pittson, R.; Lajic, Z.; Politi, H.; El Murr, N.; Armani, A.; Cavazza, A. Monitoring wine quality and fermentation kinetics with innovative technologies. In: XXIX Congreso mundial de la viña y el vino: 4a asamblea general de la O.I.V.. Madrid: Ministerio de agricultura, pesca y alimentación: p. 10 (2006) [Google Scholar]
- O'Neill, B., van Heeswijck, T., & Muhlack, R. (2011). Models for predicting wine fermentation kinetics. Chemeca 2011: Engineering a Better World: Sydney Hilton Hotel, NSW, Australia, 18–21 September 2011 (1956) [Google Scholar]
- Huang, L. Integrated Pathogen Modeling Program. USDA Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA (2013) [Google Scholar]
- Silva, F. A. S. ASSISTAT-Assistência Estatística, versão 7.6. Universidade Federal de Campina Grande-PB (2013) [Google Scholar]
- Ferreira, J., Toit, M., & Toit, W. D. The effects of copper and high sugar concentrations on growth, fermentation efficiency and volatile acidity production of different commercial wine yeast strains. Australian Journal of Grape and Wine Research, 12(1), 50–56 (2006) [CrossRef] [Google Scholar]
- Cavazza, A., Guzzon, R., Malacarne, M., & Larcher, R. The influence of the copper content in grape must on alcoholic fermentation kinetics and wine quality. A survey on the performance of 50 commercial Active Dry Yeasts. VITIS-Journal of Grapevine Research, 52(3), 149 (2015) [Google Scholar]
- Sun, X., Liu, L., Zhao, Y., Ma, T., Zhao, F., Huang, W., & Zhan, J. Effect of copper stress on growth characteristics and fermentation properties of Saccharomyces cerevisiae and the pathway of copper adsorption during wine fermentation. Food chemistry, 192, 43–52 (2016) [CrossRef] [Google Scholar]
- Brandolini, V., Tedeschi, P., Capece, A., Maietti, A., Mazzotta, D., Salzano, G., ... & Romano, P. Saccharomyces cerevisiae wine strains differing in copper resistance exhibit different capability to reduce copper content in wine. World Journal of Microbiology and Biotechnology, 18(6), 499–503 (2002) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.