Open Access
Issue
BIO Web Conf.
Volume 9, 2017
40th World Congress of Vine and Wine
Article Number 02008
Number of page(s) 4
Section Oenology
DOI https://doi.org/10.1051/bioconf/20170902008
Published online 04 July 2017
  • N. Yang, K. Huang, C. Lyu, J. Wang. Pulsed electric field technology in the manufacturing processes of wine, beer, and rice wine: A review. Food Control 61 , 28–38 (2016)
  • E. Puértolas, N. López, S. Condón, I. Alvarez, and J. Raso J. Potential applications of PEF to improve red wine quality. Trends in Food Science & Technology 21 , 247–255 (2010)
  • N. López, E. Puértolas, and S. Condon. Application of pulsed electric fields for improving the maceration process during vinification of red wine: influence of grape variety. Eur Food Res Technol. 227 , 1099–1107 (2008)
  • S. Mahnič-Kalamiza, E. Vorobiev, and D. Miklavčič. Electroporation in food Processing and Biorefinery. J. Membrane Biol. 247 , 1279–1304 (2014) [CrossRef]
  • I. Odriozola-Serrano, I. Aguilo-Aguayo, R. Soliva-Fortuny, and O. Martın-Belloso. Pulsed electric fields processing effects on quality and health-related constituents of plant-based foods. Trends in Food Science&Technology 29 , 98–107 (2013) [CrossRef]
  • S. Y. Leong, D. J. Burritt, and I. Oey. Evaluation of the anthocyanin release and health-promoting properties of Pinot Noir grape juices after pulsed electric fields. Food Chemistry 196 , 833–841 (2016) [CrossRef] [PubMed]
  • R. Soliva-Fortuny, A. Blasa, D. Knorr, and O. Martin-Belloso. Effects of pulsed electric fields on bioactive compounds in foods: a review. Trends in Food Science& Technology 20 , 544–556 (2009) [CrossRef]
  • F. J. Barba, O. Parniakov, S. A. Pereira, A. Wiktor, N. Grimi, N. Boussetta, J. A. Saraiva, J. Raso, O. Martin-Belloso, D. Witrowa-Rajchert. Current applications and new opportunities fort he use of pulsed electric fields in food science and industry. Food Research International 77 , 773–798 (2015) [CrossRef]
  • Q.-X. Ou, M. Nikolic-Jaric, and M. Gänzle. Mechanisms of inactivation of Candida humilis and Saccharomyces cerevisiae by pulsed electric fields. Bioelectrochemistry 115 , 47–55 (2017) [CrossRef] [PubMed]
  • A. G. Pakhomov, D. Miklavčič, & M. S. Markov, Advanced electroporation techniques in biology and medicine. Boca Raton: CRC Press (2010)
  • R. S. Jackson, Chem. Cons. of Gr. and Wine. Wine Science-Third Edition 270–331 (San Diego: Academic Press, 2008) [CrossRef] [EDP Sciences]
  • R. V. Davalos, I. L. M. Mir, B. Rubinsky. Tissue ablation with irreversible electroporation. Ann Biomed Eng. 33 , 223–231 (2005) [CrossRef] [PubMed]
  • P. Y. Phoon, F. G. Galindo, A. Vicente, P. Deimek. Pulsed electric field in combination with vacuum impregnation with trehalose improves the freezing tolerance of spinach leaves. J Food Eng. 88 , 144–148 (2008)
  • E. Puertolas, N. Lopez, S. Condon, J. Raso, and I. Alvarez. Pulsed electric fields inactivation of wine spoilage yeast and bacteria. International Journal of Food Microbiology 130 , 49–55 (2009) [CrossRef] [PubMed]
  • E. J. Bartowsky. Bacterial spoilage of wine and approaches to minimize it. Lett Appl Microbial 48 (2), 149–156 (2009) [CrossRef] [EDP Sciences] [PubMed]
  • S. Gergely, E. Bekassy-Molnar, and G. Vatai. The use of multiobjective optimization to improve wine filtration. Journal of Food Engineering 58 , 311–316 (2003)
  • C. Delsart, N. Grimi, N. Boussetta, C. M. Sertier, R. Ghidossi, M. M. Peuchot, and E. Vorobiev. Comparison of the effect of pulsed electric field or high voltage electrical discharge for the control of sweet white must fermentation process with the conventional addition of sulfur dioxide. Food Research International 77 , 718–724 (2015) [CrossRef]
  • E.G. Alegría, I. López, J.I. Ruiz, J. Sáenz, E. Fernández, M. Zarazaga, M. Dizy, C. Torres, F. Ruiz-Larrea High tolerance of wild Lactobacillus plantarum and Oenococcus oeni strains to lyophilisation and stress environmental conditions of acid pH and ethanol. FEMS Microbiology Letters 230 , 53–61 (2004) [CrossRef] [PubMed]
  • L. Gonzales-Arenzana, J. Portu, R. Lopez, P. Santamaria, T. Garde-Cerdan, and I. Lopez-Alfaro. Inactivation of wine-associated microbiota by continuous pulsed electric field treatments. Innovative Food Science and Emerging Technologies 29 , 187–192 (2015) [CrossRef]
  • E. Puértolas, G. Saldaña, S. Condón, I. Álvarez, and J. Raso. Evolution of polyphenolic compounds in red wine from Cabernet Sauvignon grapes processed by pulsed electric fields during aging in bottle. Food Chemistry 119 , 1063–1070 (2010)
  • S. Toepfl, V. Heinz, and D. Knorr. High intensity pulsed electric fields applied for food preservation. Chemical Engineering and Processing 46 , 537–546 (2007) [CrossRef]
  • V. Heinz, and D. Knorr. Effect of pH, ethanol addition and high hydrostatic pressure on the inactivation of Bacillus subtilis by pulsed electric fields. Innovative Food Science & Emerging Technologies 1 (2), 151–159 (2000) [CrossRef]
  • A. H. El-Hag, S. H. Jayaram, O. R. Gonzales, and M. W. Griffiths. The influence of size and shape of microorganism on pulsed electric field inactivation. IEEE Transactions on Nanobioscience 10 (3), 133–138 (2011)
  • J. R. Mattar, M. F. Turk, M. Nonus, and N. I. Lebovka. S. cerevisiae fermetation activity after moderate pulsed electric field pre-treatments. Bioelectrochemistry 103 , 92–97 (2015) [CrossRef] [PubMed]
  • T. Tanino, S. Sato, M. Ohshima. Analysis of the stress response of yeast Saccharomyces cerevisae toward pulsed electric field. J. Electrost. 70 , 212–216 (2012) [CrossRef]
  • R. S. Jackson, Chem. Cons. of Gr. and Wine. Wine Science-Third Edition 270–331 (San Diego: Academic Press, 2008) [CrossRef] [EDP Sciences]
  • R. B. Boulton, The copigmentation of anthocyanins and its role in the colour of red wine: a critical review. American Journal of Enology and Viticulture 55 , 67–87 (2001)
  • S. Vidal, L. Francis, A. Noble, M. Kwiatkowski, V. Cheynier & E. Waters. Taste and mouth-feel properties of different types of tannin-like polyphenolic compounds and anthocyanins in wine. Analytica Chimica Acta 513 , 57–65 (2004)
  • M. Sack, C. Eing, R. Stängle, A. Wolf, G. Müller, J. Sigler, L. Stukenbrock: “Electric Measurement of the Electroporation Efficiency of Mash from Wine Grapes”, Trans. DEI 16 (5), 1329–1337 (2009) [CrossRef]
  • M. Sack, J. Sigler, C. Eing, L. Stukenbrock, R. Stängle, A. Wolf, and G. Müller. Operation of an Electroporation Device for Grape Mash IEEE Transactions on Plasma Science 38 (8), 1928–1934 (2010)
  • M. Corrales, S. Toepfl, P. Butz, D. Knorr, & B. Tauscher. Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: a comparison. Innovative Food Science and Emerging Technologies 9 , 85–91 (2008) [CrossRef]
  • N. Boussetta, N. Lebovka, E. Vorobiev, H. Adenier, C. Bedel- Cloutour, & J. L. Lanoisellé. Electrically assisted extraction of soluble matter from Chardonnay grape skins for polyphenol recovery. Journal of Agricultural and Food Chemistry 57 , 1491–1497 (2009) [CrossRef] [PubMed]
  • N. El Darra, H. N. Rajha, M.-A. Ducasse, M. F. Turk N. Grimi, R. G. Maroun, N. Louka, and E. Vorobiev. Effect of pulsed electric field treatment during cold maceration and alcoholic fermentation on major red wine qualitative and quantitative parameters. Food Chemistry 213 , 352–360 (2016) [CrossRef] [PubMed]
  • A. Angersbach, V. Heinz, and D. Knorr. Effects of pulsed electric fields on cell membranes in real food systems. Innovative Food Science and Emerging Technologies 1 , 135–149 (2000) [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.