Open Access
BIO Web Conf.
Volume 17, 2020
International Scientific-Practical Conference “Agriculture and Food Security: Technology, Innovation, Markets, Human Resources” (FIES 2019)
Article Number 00142
Number of page(s) 7
Published online 28 February 2020
  • O.S. Afanasenko, Methodological guidelines on the diagnosis and methods of field assessment of the resistance of barley to leaf pathogens 20 (1987) [Google Scholar]
  • O.S. Afanasenko, Diagnosis of gelmintosporioz spots of barley leaves Agro XXI 3, 10–11 (1997) [Google Scholar]
  • O.S. Afanasenko et al., Stability of zoned and promising for zoning barley and wheat varieties to leaf diseases in the State variety plots (SVP) in the North-West region of the Russian Federation. Technology of the creation and use of varieties and hybrids with group and complex resistance to harmful organisms in plant protection 199–211 (2010) [Google Scholar]
  • L. Babayants, A. Meshterhazi, F. Wachter, N. Nekles et al., Methods of breeding and assessing the resistance of wheat and barley to diseases in the CEMA-member countries 270–277 (1988) [Google Scholar]
  • Yu.T. Dyakov, Yu.V Sergeeva, New in the systematics and nomenclature of mushrooms 496 (2003) [Google Scholar]
  • A.A. Zhuchenko, Adaptive system of plant breeding (ecological and genetic basis) Monograph in 2 volumes, vol. 2, 780 (2001) [Google Scholar]
  • T.I. Ishkova, A.E. Chumakov, Diseases of grains and cereals 21–38 (2005) [Google Scholar]
  • L.A. Kashemirova, Phytosanitary diagnostic systems for protecting the spring barley from dark brown and netted “gelmintosporiosis” PhD dissertation thesis, 33 (1995) [Google Scholar]
  • I.Yu. Kushnirenko, Mesh spotting of barley in the southern Urals and the source material for the creation of disease-resistant varieties PhD dissertation thesis, 19 (1987) [Google Scholar]
  • O.A. Saladunova et al., Forecast of the phytosanitary state of crops in Moscow Region for 2011 87 (2011) [Google Scholar]
  • B.A. Khasanov, Imperfect fungi as causative agents of major cereal diseases in Central Asia and Kazakhstan PhD dissertation thesis, 44 (1992) [Google Scholar]
  • V.M. Shevtsov, Selection and agrotechnology of winter barley in Kuban Region 137 (2008) [Google Scholar]
  • T. G. Fetch, Jr.B. J. Steffenson, Rating scales for assessing infection responses of barley infected with Cochliobolus sativus Plant Dis. 83, 213–217 (1999) [CrossRef] [PubMed] [Google Scholar]
  • K.W. Jayasena et al., Yield reduction in barley in relation to spot-type net blotch Austr. Plant Pathol. 36, 429–433 (2007) [CrossRef] [Google Scholar]
  • T.N. Khan, Effect of spot-type net blotch (Drechslera teres (Sacc.) Shoem) infection on barley yield in short season environment of northern cereal belt of Western Australia Austr. J. Agric. Res. 40, 745–752 (1989) [CrossRef] [Google Scholar]
  • G.M. Murray, J.P. Brennan, Estimating disease losses to the Australian barley industry Austr. Plant Pathol. 39(1), 85–96 (2009) [CrossRef] [Google Scholar]
  • V. Smedegard-Petersen, Isolation of two toxins produced by Pyrenophora teres and their significance in disease development of 164 net-spot blotch of barley Physiol. Plant Pathol. 10, 203–208 (1977) [CrossRef] [Google Scholar]
  • A. Tekauz, M. Desjardins, Re-emergence of spotted net blotch in Manitoba Can. J. Plant Pathol. 33, 293 (2011) [Google Scholar]
  • Syngenta Global, Retrieved from: [Google Scholar]
  • I.L. Astapchuk, Mobile tools of a phytopathologist for quantitative fast assessment of winter barley leaves damage with barley blotch in field conditions based on spectral ASC-analysis and “Eidos” system Scientific J. of KubSAU 7(131), 325–386 (2017) [Google Scholar]
  • E.V. Lutsenko, V.N. Laptev, A.E. Sergeev, Systemcognitive modeling in agro-industrial complex (AIC), tutorial 518 (2018) [Google Scholar]
  • E.V. Lutsenko, Adaptive synthesis of intelligent measurement systems with the use of ASC-analysis and “Eidos” system. System identification in econometrics, biometrics, ecology, pedagogy, psychology and medicine, Sci. J. of KubSAU, 2(116), 1–60 (2016) [Google Scholar]
  • E.V. Lutsenko, Automated system-cognitive analysis of specific spectral and integrated images in “Eidos” system (application of information theory and cognitive technologies in spectral analysis) Sci. J. of KubSAU 4(128), 1–64 (2017) [Google Scholar]
  • E.V. Lutsenko, V.E. Korzhakov, V.V. Ermolenko, Intellectual systems in controlling and management of medium and small firms, under the scientific 392 (2011) [Google Scholar]
  • E.V. Lutsenko, V.I. Loiko, Semantic information models for the management of the agro-industrial complex 480 (2005) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.