Open Access
BIO Web Conf.
Volume 27, 2020
International Scientific-Practical Conference “Agriculture and Food Security: Technology, Innovation, Markets, Human Resources” (FIES 2020)
Article Number 00066
Number of page(s) 5
Published online 25 November 2020
  • T.H. Aagnes, W. Sørmo, S.D. Mathiesen, Ruminal microbial digestion in free living, in captive lichen-fed and in starved reindeer (Rangifer tarandus tarandus) in winter, Appl. Env. Microb. 61(2), 583–591 (1995) [CrossRef] [Google Scholar]
  • G. Henderson, F. Cox, S. Ganesh, A. Jonker, W. Young, Global Rumen Census Collaborators, Janssen PH., Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range, Sci. Rep. 5, 14567 (2015) [CrossRef] [PubMed] [Google Scholar]
  • S. Koike, Y. Kobayashi, Fibrolytic Rumen Bacteria: Their Ecology and Functions, Asian-Austral. J. of Animal Sci. 22(1), 131–138 (2009) [CrossRef] [Google Scholar]
  • M.A. Brooks, R.M. Harvey, N.F. Johnson, M.S. Kerley, Rumen degradable protein supply affects microbial efficiency in continuous culture and growth in steers, J. Anim. Sci. 90, 4985–4994 (2012) [CrossRef] [PubMed] [Google Scholar]
  • E.J. Kim, Dietary transformation of lipid in the rumen microbial ecosystem, Asian Austral. J. Anim. Sci. 22, 1341–1350 (2009) [CrossRef] [Google Scholar]
  • A. Offner, A. Bach, D. Sauvant, Quantitative review of in situ starch degradation in the rumen, Anim. Feed Sci. Technol. 106, 81–93 (2003) [CrossRef] [Google Scholar]
  • E. Rosenberg, G. Sharon, I. Atad, I. ZilberRosenberg, The evolution of animal and plants via symbiosis with microorganisms, Environ. Microbiol. Rep. 2, 500–506 (2011) [CrossRef] [Google Scholar]
  • J.M. Brulc, D.A. Antonopoulos, M.E.B. Miller et al., Proc. of the National Acad. of Sci. of the United States of Amer. 106, 1948–1953 (2009) [CrossRef] [Google Scholar]
  • R. Wallace, J. Rooke, N. McKain, The rumen microbial metagenome associated with high methane production in cattle BMC, Genomics 16, 839 (2015) [PubMed] [Google Scholar]
  • J.I. Velazco, A. Cottle, R.S. Hegarty, Methane emissions and feeding behaviour of feedlot cattle supplemented with nitrate or urea, Animal Product. Sci. 54, 1737–1740 (2014) [CrossRef] [Google Scholar]
  • L. Cersosimo, M. Bainbridge, J. Kraft, Influence of periparturient and postpartum diets on rumen methanogen communities in three breeds of primiparous dairy cows, BMC Microbiol. 16, 78 (2016) [CrossRef] [PubMed] [Google Scholar]
  • A. Patra, T. Park, M Kim, Rumen methanogens and mitigation of methane emission by antimethanogenic compounds and substances, J. of Animal Sci. and Biotechnol. 8, 13 (2017) [CrossRef] [Google Scholar]
  • P.N. Hobson, R.J. Wallace, Microbial ecology and activities in the rumen: Part II. Critical Rev. Microbiol. 9, 253–320 (1982) [CrossRef] [Google Scholar]
  • Ch. Newbold, G. de la Fuente, A. Belanch, The Role of Ciliate Protozoa in the Rumen, Frontiers in Microbiol. 6, 1313 (2015) [CrossRef] [Google Scholar]
  • K.C. Costa, J.A. Leigh, Metabolic versatility in methanogens, Curr. Opin. Biotechnol. 70, 5 (2014) [Google Scholar]
  • M.A Sundset, J.E. Edwards, Y.F Cheng et al., Molecular diversity of the rumen microbiome of Norwegian reindeer on natural summer pasture, Microb. Ecol. 57, 335–348 (2009) [CrossRef] [Google Scholar]
  • T. McAllister, K-J. Cheng, E. Okine, G. Mathison, Dietary, environmental and microbiological aspects of methane production in ruminants, Can. J. Anim. Sci. 76, 231–243 (1996) [CrossRef] [Google Scholar]
  • M. Auffret, R. Stewart, R. Dewhurst, Identification, comparison, and validation of robust rumen microbial biomarkers for methane emissions using diverse Bos taurus breeds and basal diets, Frontiers in Microbiol. 8, 2642 (2018) [CrossRef] [Google Scholar]
  • E.A. Dinsdale., R.E. Edwards, E.D. Frank, J.B. Emerson, P. Wacklin, Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals foragespecific glycoside hydrolases, Proc. Natl. Acad. Sci. USA 106, 1948–1953 (2009) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.