Open Access
Issue
BIO Web Conf.
Volume 41, 2021
The 4th International Conference on Bioinformatics, Biotechnology, and Biomedical Engineering (BioMIC 2021)
Article Number 07007
Number of page(s) 6
Section Drug Development and Nutraceutical
DOI https://doi.org/10.1051/bioconf/20214107007
Published online 22 December 2021
  • Hanson D. Historical evolution of alcohol consumption in society. Alcohol: science, policy and public health. 2013;3–12. [Google Scholar]
  • Bruha R, Dvorak K, Petrtyl J. Alcoholic liver disease. World J Hepatol. 2012 Mar 27;4(3):81–90. [Google Scholar]
  • Scott S, Kaner E. Alcohol and public health: heavy drinking is a heavy price to pay for populations. J Public Health. 2014 Sep 1;36(3):396–8. [Google Scholar]
  • Mann RE, Smart RG, Govoni R. The epidemiology of alcoholic liver disease. Alcohol Res Health. 2003;27(3):209–19. [Google Scholar]
  • Orman ES, Odena G, Bataller R. Alcoholic liver disease: Pathogenesis, management, and novel targets for therapy. J Gastroenterol Hepatol. 2013;28(S1):77–84. [Google Scholar]
  • WHO. Alcohol [Internet]. 2018 [cited 2021 Jul 26]. Available from: https://www.who.int/news-room/fact-sheets/detail/alcohol [Google Scholar]
  • Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol. 2019;70(1):151–71. [Google Scholar]
  • Marsano LS, Mendez C, Hill D, Barve S, Mcclain CJ. Diagnosis and treatment of alcoholic liver disease and its complications. Alcohol Res Health. 2003;27(3):247–56. [Google Scholar]
  • Barve A, Khan R, Marsano L, V Ravindra K, McClain C. Treatment of alcoholic liver disease. Ann Hepatol. 2008;7(1):5–15. [Google Scholar]
  • Sudeep HV, Venkatakrishna K, Sundeep K, Vasavi HS, Raj A, Chandrappa S, et al. Turcuron: A standardized bisacurone-rich turmeric rhizome extract for the prevention and treatment of hangover and alcohol-induced liver injury in rats. Pharmacognosy Magazine. 2020;16(70):263. [Google Scholar]
  • Liu Y, Wang J, Li L, Hu W, Qu Y, Ding Y, et al. Hepatoprotective Effects of Antrodia cinnamomea : The modulation of oxidative stress signaling in a mouse model of alcohol-induced acute liver injury. Oxid Med Cell Longev. 2017;2017:1–12. [Google Scholar]
  • Frazier TH, Stocker AM, Kershner NA, Marsano LS, McClain CJ. Treatment of alcoholic liver disease. Therap Adv Gastroenterol. 2011;4(1):63–81. [Google Scholar]
  • Zhang A, Sun H, Wang X. Recent advances in natural products from plants for treatment of liver diseases. Eur J Med Chem. 2013;63:570–7. [Google Scholar]
  • AbouZid S, Ahmed OM. Silymarin Flavonolignans. In: Studies in Natural Products Chemistry [Internet]. Elsevier; 2013 [cited 2021 Jul 26]. p. 469–84. Available from: https://linkinghub.elsevier.com/retrieve/pii/B978044459603100014X [Google Scholar]
  • Mohs RC, Greig NH. Drug discovery and development: Role of basic biological research. Alzheimers Dementia. 2017;3(4):651–7. [Google Scholar]
  • de Almeida S.Junior. In vivo methods for the evaluation of anti-inflammatory and antinoceptive potential. Brazilian Journal Of Pain [Internet]. 2019 [cited 2021 Jul 27];2(4). Available from: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S259531922019000400386&lng=en&nrm=iso&tlng=en [Google Scholar]
  • Esteves PJ, Abrantes J, Baldauf H-M, BenMohamed L, Chen Y, Christensen N, et al. The wide utility of rabbits as models of human diseases. Exp Mol Med. 2018;50(5):1–10. [Google Scholar]
  • Bryda EC. The Mighty Mouse: The impact of rodents on advances in biomedical research. Mo Med. 2013;110(3):207–11. [Google Scholar]
  • Buthet LR, Bietto FM, Castro JA, Castro GD. Metabolism of ethanol to acetaldehyde by rat uterine horn subcellular fractions. Hum Exp Toxicol. 2011;30(11):1785–94. [Google Scholar]
  • Owens AH, Marshall EK. The metabolism of ethyl alcohol in the rat. J Pharmacol Exp Ther. 1955;115(3):360–70. [Google Scholar]
  • Plapp BV, Leidal KG, Murch BP, Green DW. Contribution of liver alcohol dehydrogenase to metabolism of alcohols in rats. Chem Biol Interact. 2015;234:85–95. [Google Scholar]
  • Holmes RS, Duley JA, Algar EM, Mather PB, Rout UK. Biochemical and genetic studies on enzymes of alcohol metabolism: the mouse as a model organism for human studies. Alcohol Alcohol. 1986;21(1):41–56. [Google Scholar]
  • Rodd-Henricks ZA, McKinzie DL, Shaikh SR, Murphy JM, McBride WJ, Lumeng L, et al. Alcohol deprivation effect is prolonged in the alcohol Preferring (P) rat after repeated deprivations. Alcoholism. 2000;24(1):8–16. [Google Scholar]
  • Villarín Pildaín L, Vengeliene V, Matthäus F. New measurement criteria for studying alcohol drinking and relapse in rodents. In Silico Pharmacol. 2013;1:13. [Google Scholar]
  • Vengeliene V, Siegmund S, Singer MV, Sinclair JD, Li TK, Spanagel R. A comparative study on alcohol-preferring rat lines: effects of deprivation and stress phases on voluntary alcohol intake. Alcoholism. 2003;27(7):1048–54. [Google Scholar]
  • Liu F-P, Ma X, Li M-M, Li Z, Han Q, Li R, et al. Hepatoprotective effects of Solanum nigrum against ethanol-induced injury in primary hepatocytes and mice with analysis of glutathione S-transferase A1. J Chinese Med Assoc. 2016;79(2):65–71. [Google Scholar]
  • Zhang L, Meng B, Li L, Wang Y, Zhang Y, Fang X, et al. Boletus aereus protects against acute alcohol-induced liver damage in the C57BL/6 mouse via regulating the oxidative stress-mediated NF-κB pathway. Pharm Biol. 2020;58(1):905–14. [Google Scholar]
  • Jain NK, Singhai AK. Protective role of Beta vulgaris L. leaves extract and fractions on ethanolmediated hepatic toxicity. Acta Pol Pharm. 2012;69(5):945–50. [Google Scholar]
  • Jang S-H, Cho S-W, Yoon H-M, Jang K-J, Song C-H, Kim C-H. Hepatoprotective Evaluation of Ganoderma lucidum Pharmacopuncture: In vivo Studies of Ethanol-induced Acute Liver Injury. J Pharmacopuncture. 2014;17(3):16–24. [Google Scholar]
  • Yu Y, Tian Z-Q, Liang L, Yang X, Sheng D-D, Zeng J-X, et al. Babao Dan attenuates acute ethanol-induced liver injury via Nrf2 activation and autophagy. Cell Biosci. 2019;9:80. [Google Scholar]
  • Huang Q-H, Xu L-Q, Liu Y-H, Wu J-Z, Wu X, Lai X-P, et al. Polydatin Protects Rat Liver against Ethanol-Induced Injury: Involvement of CYP2E1/ROS/Nrf2 and TLR4/NF-κB p65 Pathway. Evid Based Complement Alternat Med. 2017;2017:7953850. [Google Scholar]
  • Tian Z, Jia H, Jin Y, Wang M, Kou J, Wang C, et al. Chrysanthemum extract attenuates hepatotoxicity via inhibiting oxidative stress in vivo and in vitro. Food Nutr Res. 2019;63. [Google Scholar]
  • Hao L, Xie Y, Wu G, Cheng A, Liu X, Zheng R, et al. Protective Effect of Hericium erinaceus on Alcohol Induced Hepatotoxicity in Mice. Evid Based Complement Alternat Med. 2015;2015:418023. [Google Scholar]
  • Lee SY, Ko KS. Effects of S-Adenosylmethionine and Its Combinations With Taurine and/or Betaine on Glutathione Homeostasis in Ethanol-induced Acute Hepatotoxicity. Journal of Cancer Prevention. 2016 Sep 1;21(3):164–72. [Google Scholar]
  • Iqbal S, Mujahid M, Kashif S, Khalid M, Badruddeen, Arif DrM, et al. Protection of hepatotoxicity using Spondias pinnata by prevention of ethanol-induced oxidative stress, DNA-damage and altered biochemical markers in Wistar rat. Integrative Medicine Research. 2016 May 1;5. [Google Scholar]
  • Zheng Y, Cui J, Chen AH, Zong ZM, Wei XY. Optimization of ultrasonic-microwave assisted extraction and hepatoprotective activities of polysaccharides from trametes orientalis. Molecules. 2019;24(1):147. [Google Scholar]
  • Jiang Z, Wang J, Xue H, Wang M, Jiang H, Liang Y, et al. Protective effect of wild Corni fructus methanolic extract against acute alcoholic liver injury in mice. Redox report : communications in free radical research. 2016;22:1–8. [Google Scholar]
  • Pal S, Bhattacharjee A, Mukherjee S, Bhattacharya K, Mukherjee S, Khowala S. Effect of Alocasia indica Tuber Extract on Reducing Hepatotoxicity and Liver Apoptosis in Alcohol Intoxicated Rats. BioMed research international. 2014 May 29;2014:349074. [Google Scholar]
  • Lodhi P, Tandan N, Singh N, Kumar D, Kumar M. Camellia sinensis (L.) Kuntze Extract Ameliorates Chronic Ethanol-Induced Hepatotoxicity in Albino Rats. Evid Based Complement Alternat Med. 2014;2014:787153. [Google Scholar]
  • Amang AP, Kodji E, Mezui C, Baane MP, Siwe GT, Kuissu TM, et al. Hepatoprotective Effects of Aqueous Extract of Opilia celtidifolia (Opiliaceae) Leaves against Ethanol-Induced Liver Damage in Rats. Evid Based Complement Alternat Med. 2020;2020:6297475. [Google Scholar]
  • Zhou J, Zhang J, Wang C, Qu S, Zhu Y, Yang Z, et al. Açaí (Euterpe oleracea Mart.) attenuates alcohol-induced liver injury in rats by alleviating oxidative stress and inflammatory response. Exp Ther Med. 2018;15(1):166–72. [Google Scholar]
  • Panda V, Ashar H, Srinath S. Antioxidant and hepatoprotective effect of Garcinia indica fruit rind in ethanol-induced hepatic damage in rodents. Interdiscip Toxicol. 2012;5(4):207–13. [Google Scholar]
  • Lu C, Zhang F, Xu W, Wu X, Lian N, Jin H, et al. Curcumin attenuates ethanol-induced hepatic steatosis through modulating Nrf2/FXR signaling in hepatocytes. IUBMB Life. 2015;67(8):645–58. [Google Scholar]
  • Noorani AA, Kale MK. Pretreatment of Albino Rats with Methanolic Fruit Extract of Randia Dumetorum (L.) Protects against Alcohol Induced Liver Damage. Korean J Physiol Pharmacol. 2012;16(2):125–30. [Google Scholar]
  • Shukla I, Azmi L, Gupta SS, Upreti DK, Rao CV. Amelioration of anti-hepatotoxic effect by Lichen rangiferinus against alcohol induced liver damage in rats. J Ayurveda Integr Med. 2019;10(3):171–7. [Google Scholar]
  • Kim GJ, Song DH, Yoo HS, Chung KH, Lee KJ, An JH. Hederagenin supplementation alleviates the pro-inflammatory and apoptotic response to alcohol in rats. Nutrients. 2017;9(1):E41. [Google Scholar]
  • Chaphalkar R, Apte KG, Talekar Y, Ojha SK, Nandave M. Antioxidants of Phyllanthus emblica L. Bark Extract Provide Hepatoprotection against Ethanol-Induced Hepatic Damage: A Comparison with Silymarin. Oxid Med Cell Longev. 2017;2017:3876040. [Google Scholar]
  • Rejitha S, Prathibha P, Indira M. Nrf2-mediated antioxidant response by ethanolic extract of Sida cordifolia provides protection against alcoholinduced oxidative stress in liver by upregulation of glutathione metabolism. Redox Rep. 2015;20(2):75–80. [Google Scholar]
  • Prathibha P, Rejitha S, Harikrishnan R, Das SS, Abhilash PA, Indira M. Additive effect of alpha-tocopherol and ascorbic acid in combating ethanolinduced hepatic fibrosis. Redox Rep. 2013;18(1):36–46. [Google Scholar]
  • Pourbakhsh H, Taghiabadi E, Abnous K, Hariri A, Hosseini S, Hosseinzadeh H. Effect of Nigella sativa fixed oil on ethanol toxicity in rats. Iranian journal of basic medical sciences. 2014;17:1020–31. [Google Scholar]
  • Rezaee Khorasany A, Razavi M, Taghiabadi E, Tabatabaee Yazdy A, Hosseinzadeh H. Effect of crocin, an active saffron constituent, on ethanol toxicity in the rat: histopathological and biochemical studies. Iranian Journal of Basic Medical Sciences [Internet]. 2020 ;23(1). [Google Scholar]
  • Yoo J-H, Kang K, Yun JH, Kim MA, Nho CW. Crepidiastrum denticulatum extract protects the liver against chronic alcohol-induced damage and fat accumulation in rats. J Med Food. 2014;17(4):432–8. [Google Scholar]
  • Alderman JA, Sanny C, Gordon E, Lieber CS. Ethanol feeding can produce secondary alterations in aldehyde dehydrogenase isozymes. Alcohol. 1985;2(1):91–5. [Google Scholar]
  • Michoudet C, Baverel G. Metabolism of acetaldehyde in human and baboon renal cortex. Ethanol synthesis by isolated baboon kidneycortex tubules. FEBS Lett. 1987;216(1):113–7. [Google Scholar]
  • Nomura F, Pikkarainen PH, Jauhonen P, Arai M, Gordon ER, Baraona E, et al. Effect of ethanol administration on the metabolism of ethanol in baboons. J Pharmacol Exp Ther. 1983;227(1):78–83. [Google Scholar]
  • French SW, Ruebner BH, Mezey E, Tamura T, Halsted CH. Effect of chronic ethanol feeding on hepatic mitochondria in the monkey. Hepatology. 1983;3(1):34–40. [Google Scholar]
  • Rogers AE, Fox JG, Murphy JC. Ethanol and diet interactions in male rhesus monkeys. Drug Nutr Interact. 1981;1(1):3–14. [Google Scholar]
  • Abhilash PA, Harikrishnan R, Indira M. Ascorbic acid supplementation down-regulates the alcohol induced oxidative stress, hepatic stellate cell activation, cytotoxicity and mRNA levels of selected fibrotic genes in guinea pigs. Free Radic Res. 2012;46(2):204–13. [Google Scholar]
  • Hoet P, Buchet J-P, Sempoux C, Haufroid V, Rahier J, Lison D. Potentiation of 2,2-dichloro1,1,1-trifluoroethane (HCFC-123)-induced liver toxicity by ethanol in guinea-pigs. Arch Toxicol. 2002;76(12):707–14. [Google Scholar]
  • Zahlten RN, Nejtek ME, Jacobsen JC. Ethanol metabolism in guinea pig: ethanol oxidation and its effect on NAD/NADH ratios, oxygen consumption, and ketogenesis in isolated hepatocytes of fed and fasted animals. Arch Biochem Biophys. 1982;213(1):200–31. [Google Scholar]
  • Sukardi H, Chng HT, Chan ECY, Gong Z, Lam SH. Zebrafish for drug toxicity screening: bridging the in vitro cell-based models and in vivo mammalian models. Expert Opin Drug Metab Toxicol. 2011;7(5):579–89. [Google Scholar]
  • Huang M, Xu J, Shin CH. Development of an ethanol-induced fibrotic liver model in zebrafish to study progenitor cell-mediated hepatocyte regeneration. J Vis Exp. 2016;(111):54002. [Google Scholar]
  • Podechard N, Chevanne M, Fernier M, Tête A, Collin A, Cassio D, et al. Zebrafish larva as a reliable model for in vivo assessment of membrane remodeling involvement in the hepatotoxicity of chemical agents. J Appl Toxicol. 2017;37(6):732–46. [Google Scholar]
  • Mathews S, Xu M-J, Wang H, Bertola A, Gao B. Animal models of alcohol-induced liver disease: pathophysiology, translational relevance and challenges. American journal of physiology Gastrointestinal and liver physiology. 2014;306. [Google Scholar]
  • Dhillon A, Steadman RH. Liver diseases. anesthesia and uncommon diseases: Sixth Edition. 2012 Jan 1;162–214. [Google Scholar]
  • Lieber CS, DeCarli LM. The feeding of alcohol in liquid diets: two decades of applications and 1982 update. Alcohol Clin Exp Res. 1982;6(4):523–31. [Google Scholar]
  • Kim DH, Lee EM, Do SH, Jeong DH, Jeong KS. Changes of the cytoplasmic proteome in response to alcoholic hepatotoxicity in rats. Int J Mol Sci. 2015;16(8):18664–82. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.