Open Access
Issue |
BIO Web Conf.
Volume 55, 2022
5th International Conference on Frontiers of Biological Sciences and Engineering (FBSE 2022)
|
|
---|---|---|
Article Number | 01005 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/bioconf/20225501005 | |
Published online | 21 November 2022 |
- Barao, I., & Murphy, W. J. (2003). The immunobiology of natural killer cells and bone marrow allograft rejection. Biology of Blood and Marrow Transplantation, 9(12),727–741. https://doi.org/10.1016/j.bbmt.2003.09.002 [CrossRef] [PubMed] [Google Scholar]
- Bartlett, J. B., Dredge, K., & Dalgleish, A. G. (2004). The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nature Reviews Cancer, 4(4),314–322. https://doi.org/10.1038/nrc1323 [CrossRef] [PubMed] [Google Scholar]
- Cong, J., Wang, X., Zheng, X., Wang, D., Fu, B., Sun, R., Tian, Z., & Wei, H. (2018). Dysfunction of natural killer cells by fbp1-induced inhibition of glycolysis during lung cancer progression. Cell Metabolism, 28(2),243-255.e5. https://doi.org/10.1016/j.cmet.2018.06.021 [CrossRef] [PubMed] [Google Scholar]
- Cooper, M. A., Fehniger, T. A., & Caligiuri, M. A. (2001). The biology of human natural killer-cell subsets. Trends in Immunology, 22(11),633–640. https://doi.org/10.1016/s1471-4906(01)02060-9 [CrossRef] [PubMed] [Google Scholar]
- Cornel, A. M., Mimpen, I. L., & Nierkens, S. (2020). MHC Class I downregulation in cancer: Underlying mechanisms and potential targets for cancer immunotherapy. Cancers, 12(7), 1760. https://doi.org/10.3390/cancers12071760 [CrossRef] [Google Scholar]
- Creelan, B. C., & Antonia, S. J. (2019). The NKG2A immune checkpoint — a new direction in cancer immunotherapy. Nature Reviews Clinical Oncology, 16(5),277–278. https://doi.org/10.1038/s41571-019-0182-8 [CrossRef] [PubMed] [Google Scholar]
- Du, N., Guo, F., Wang, Y., & Cui, J. (2021c). NK cell therapy: A rising star in cancer treatment. Cancers, 13(16), 4129. https://doi.org/10.3390/cancers13164129 [CrossRef] [PubMed] [Google Scholar]
- Elahi, R., Heidary, A. H., Hadiloo, K., & Esmaeilzadeh, A. (2021). Chimeric antigen receptorengineered natural killer (CAR NK) cells in cancer treatment; recent advances and future prospects. Stem Cell Reviews and Reports, 17(6),2081–2106. https://doi.org/10.1007/s12015-021-10246-3 [CrossRef] [PubMed] [Google Scholar]
- Ferrara, J. L., Levine, J. E., Reddy, P., & Holler, E. (2009). Graft-versus-host disease. The Lancet, 373(9674),1550–1561. https://doi.org/10.1016/s0140-6736(09)60237-3 [CrossRef] [Google Scholar]
- Fleischhauer, K., & Beelen, D. W. (2016). HLA mismatching as a strategy to reduce relapse after alternative donor transplantation. Seminars in Hematology, 53(2),57–64. https://doi.org/10.1053/j.seminhematol.2016.01.010 [CrossRef] [PubMed] [Google Scholar]
- Ghadially, H., Brown, L., Lloyd, C., Lewis, L., Lewis, A., Dillon, J., Sainson, R., Jovanovic, J., Tigue, N. J., Bannister, D., Bamber, L., Valge-Archer, V., & Wilkinson, R. W. (2017). MHC class I chain-related protein A and B (MICA and MICB) are predominantly expressed intracellularly in tumour and normal tissue. British Journal of Cancer, 116(9),1208–1217. https://doi.org/10.1038/bjc.2017.79 [CrossRef] [PubMed] [Google Scholar]
- Ghiringhelli, F., Ménard, C., Terme, M., Flament, C., Taieb, J., Chaput, N., Puig, P. E., Novault, S., Escudier, B., Vivier, E., Lecesne, A., Robert, C., Blay, J.-Y., Bernard, J., Caillat-Zucman, S., Freitas, A., Tursz, T., Wagner-Ballon, O., Capron, C., … Zitvogel, L. (2005). CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor–β–dependent manner. Journal of Experimental Medicine, 202(8),1075–1085. https://doi.org/10.1084/jem.20051511 [CrossRef] [PubMed] [Google Scholar]
- Hayashi, T., Hideshima, T., Akiyama, M., Podar, K., Yasui, H., Raje, N., Kumar, S., Chauhan, D., Treon, S. P., Richardson, P., & Anderson, K. C. (2005). Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: Clinical application. British Journal of Haematology, 128(2),192–203. https://doi.org/10.1111/j.1365-2141.2004.05286.x [CrossRef] [PubMed] [Google Scholar]
- Hu, J., Bernatchez, C., Zhang, L., Xia, X., Kleinerman, E. S., Hung, M.-C., Hwu, P., & Li, S. (2017b). Induction of NKG2D ligands on solid tumors requires tumor-specific CD8+ T cells and histone acetyltransferases. Cancer Immunology Research, 5(4),300–311. https://doi.org/10.1158/2326-6066.cir-16-0234 [CrossRef] [PubMed] [Google Scholar]
- Jung, H., Hsiung, B., Pestal, K., Procyk, E., & Raulet, D. H. (2012). RAE-1 ligands for the NKG2D receptor are regulated by E2F transcription factors, which control cell cycle entry. Journal of Experimental Medicine, 209(13),2409–2422. https://doi.org/10.1084/jem.20120565 [CrossRef] [PubMed] [Google Scholar]
- Juillerat, A., Marechal, A., Filhol, J. M., Valogne, Y., Valton, J., Duclert, A., Duchateau, P., & Poirot, L. (2017). An oxygen sensitive self-decision making engineered CAR T-cell. Scientific Reports, 7(1). https://doi.org/10.1038/srep39833 [CrossRef] [PubMed] [Google Scholar]
- Krzewski, K., & Strominger, J. L. (2008). The killer’s kiss: The many functions of NK cell immunological synapses. Current Opinion in Cell Biology, 20(5),597–605. https://doi.org/10.1016/j.ceb.2008.05.006 [CrossRef] [PubMed] [Google Scholar]
- Laskowski, T. J., Biederstädt, A., & Rezvani, K. (2022). Natural killer cells in antitumour adoptive cell immunotherapy. Nature Reviews Cancer. https://doi.org/10.1038/s41568-022-00491-0 [Google Scholar]
- Liu, E., Tong, Y., Dotti, G., Shaim, H., Savoldo, B., Mukherjee, M., Orange, J., Wan, X., Lu, X., Reynolds, A., Gagea, M., Banerjee, P., Cai, R., Bdaiwi, M. H., Basar, R., Muftuoglu, M., Li, L., Marin, D., Wierda, W., … Rezvani, K. (2017). Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia, 32(2),520–531. https://doi.org/10.1038/leu.2017.226 [Google Scholar]
- Marçais, A., Cherfils-Vicini, J., Viant, C., Degouve, S., Viel, S., Fenis, A., Rabilloud, J., Mayol, K., Tavares, A., Bienvenu, J., Gangloff, Y.-G., Gilson, E., Vivier, E., & Walzer, T. (2014). The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells. Nature Immunology, 15(8),749–757. https://doi.org/10.1038/ni.2936 [CrossRef] [PubMed] [Google Scholar]
- Meazza, R., Azzarone, B., Orengo, A. M., & Ferrini, S. (2011). Role of common-gamma chain cytokines in NK cell development and function: Perspectives for immunotherapy. Journal of Biomedicine and Biotechnology, 2011, 1–16. https://doi.org/10.1155/2011/861920 [CrossRef] [Google Scholar]
- Melaiu, O., Lucarini, V., Cifaldi, L., & Fruci, D. (2020). Influence of the tumor microenvironment on NK cell function in solid tumors. Frontiers in Immunology, 10. https://doi.org/10.3389/fimmu.2019.03038 [CrossRef] [PubMed] [Google Scholar]
- Miller, J. S., Cooley, S., Parham, P., Farag, S. S., Verneris, M. R., McQueen, K. L., Guethlein, L. A., Trachtenberg, E. A., Haagenson, M., Horowitz, M. M., Klein, J. P., & Weisdorf, D. J. (2007). Missing KIR ligands are associated with less relapse and increased graft-versus-host disease (GVHD) following unrelated donor allogeneic HCT. Blood, 109(11),5058–5061. https://doi.org/10.1182/blood-2007-01-065383 [CrossRef] [PubMed] [Google Scholar]
- Myers, J. A., & Miller, J. S. (2020). Exploring the NK cell platform for cancer immunotherapy. Nature Reviews Clinical Oncology, 18(2),85–100. https://doi.org/10.1038/s41571-020-0426-7 [Google Scholar]
- Wolf, N. K., Kissiov, D. U., & Raulet, D. H. (2022b). Roles of natural killer cells in immunity to cancer, and applications to immunotherapy. Nature Reviews Immunology. https://doi.org/10.1038/s41577-022-00732-1 [Google Scholar]
- Navin, I., Lam, M. T., & Parihar, R. (2020). Design and implementation of NK cell-based immunotherapy to overcome the solid tumor microenvironment. Cancers, 12(12), 3871. https://doi.org/10.3390/cancers12123871 [CrossRef] [Google Scholar]
- Romagné, F., & Vivier, E. (2011). Natural killer cellbased therapies. F1000 Medicine Reports, 3. https://doi.org/10.3410/m3-9 [Google Scholar]
- Sheppard, S., Guedes, J., Mroz, A., Zavitsanou, A.- M., Kudo, H., Rothery, S. M., Angelopoulos, P., Goldin, R., & Guerra, N. (2017). The immunoreceptor NKG2D promotes tumour growth in a model of hepatocellular carcinoma. Nature Communications, 8(1). https://doi.org/10.1038/ncomms13930 [CrossRef] [PubMed] [Google Scholar]
- Shi, J., Garg, T. K., Kellum, R. E., Szmania, S. M., Barlogie, B., Tricot, G., & van Rhee, F. (2006). Bortezomib down-regulates HLA class I and enhances natural killer cell mediated lysis of myeloma. Blood, 108(11),3498–3498. https://doi.org/10.1182/blood.v108.11.3498.3498 [CrossRef] [Google Scholar]
- Sungur, C. M., & Murphy, W. J. (2014). Positive and negative regulation by NK cells in cancer. Critical Reviews in Oncogenesis, 19(1–2), 57–66. https://doi.org/10.1615/critrevoncog.2014010805 [CrossRef] [PubMed] [Google Scholar]
- Sutherland, C. L., Rabinovich, B., Chalupny, N. J., Brawand, P., Miller, R., & Cosman, D. (2006). ULBPs, human ligands of the NKG2D receptor, stimulate tumor immunity with enhancement by IL- 15. Blood, 108(4),1313–1319. https://doi.org/10.1182/blood-2005-11-011320 [CrossRef] [PubMed] [Google Scholar]
- Trinchieri, Giorgio. “Interleukin-12 and the Regulation of Innate Resistance and Adaptive Immunity.” Nature Reviews Immunology, vol. 3, no. 2, Feb. 2003, pp. 133–46, https://doi.org/10.1038/nri1001. [CrossRef] [PubMed] [Google Scholar]
- Viel, S., Marçais, A., Guimaraes, F. S.-F., Loftus, R., Rabilloud, J., Grau, M., Degouve, S., Djebali, S., Sanlaville, A., Charrier, E., Bienvenu, J., Marie, J. C., Caux, C., Marvel, J., Town, L., Huntington, N. D., Bartholin, L., Finlay, D., Smyth, M. J., & Walzer, T. (2016). TGF-β inhibits the activation and functions of NK cells by repressing the mTOR pathway. Science Signaling, 9(415). https://doi.org/10.1126/scisignal.aad1884 [CrossRef] [Google Scholar]
- Wolf, N. K., Kissiov, D. U., & Raulet, D. H. (2022). Roles of natural killer cells in immunity to cancer, and applications to immunotherapy. Nature Reviews Immunology. https://doi.org/10.1038/s41577-022-00732-1 [PubMed] [Google Scholar]
- Wu, J., Gao, F., Wang, C., Qin, M., Han, F., Xu, T., Hu, Z., Long, Y., He, X., Deng, X., Ren, D., & Dai, T. (2019). IL-6 and IL-8 secreted by tumour cells impair the function of NK cells via the STAT3 pathway in oesophageal squamous cell carcinoma. Journal of Experimental & Clinical Cancer Research, 38(1). https://doi.org/10.1186/s13046-019-1310-0 [Google Scholar]
- Yilmaz, A., Cui, H., Caligiuri, M. A., & Yu, J. (2020). Chimeric antigen receptor-engineered natural killer cells for cancer immunotherapy. Journal of Hematology & Oncology, 13(1). https://doi.org/10.1186/s13045-020-00998-9 [PubMed] [Google Scholar]
- Yoon, S. R., Kim, T.-D., & Choi, I. (2015). Understanding of molecular mechanisms in natural killer cell therapy. Experimental & Molecular Medicine, 47(2),e141–e141. https://doi.org/10.1038/emm.2014.114 [CrossRef] [PubMed] [Google Scholar]
- Yu, J., Wei, M., Becknell, B., Trotta, R., Liu, S., Boyd, Z., Jaung, M. S., Blaser, B. W., Sun, J., Benson, D. M., Jr., Mao, H., Yokohama, A., Bhatt, D., Shen, L., Davuluri, R., Weinstein, M., Marcucci, G., & Caligiuri, M. A. (2006). Pro- and antiinflammatory cytokine signaling: Reciprocal antagonism regulates interferon-gamma production by human natural killer cells. Immunity, 24(5),575–590. https://doi.org/10.1016/j.immuni.2006.03.016 [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.