Open Access
BIO Web Conf.
Volume 56, 2023
43rd World Congress of Vine and Wine
Article Number 01034
Number of page(s) 9
Section Viticulture
Published online 24 February 2023
  • Zacharof, M. P. Grape Winery Waste as Feedstock for Bioconversions: Applying the Biorefinery Concept. Waste and Biomass Valorization 8, 1011-1025 (2016) [Google Scholar]
  • International Organization of Vine and Wine. Statistical report on world vitiviniculture. 2019 Stat. Rep. World Vitiviniculture 23 (2019) [Google Scholar]
  • Gallardo, J. F. The Soils of Spain. (Springer, 2016) [CrossRef] [Google Scholar]
  • Espinosa, J., Moreno, J. & Bernal, G. The soils of Chile. Springer (2018) [Google Scholar]
  • Costantini, E. A. C. & Dazzi, C. The soils of Italy. (Springer, 2013). doi:10.1007/978-94-007-5642-7 [CrossRef] [Google Scholar]
  • Mondini, C. et al. Organic amendment effectively recovers soil functionality in degraded vineyards. Eur. J. Agron. 101, 210-221 (2018) [CrossRef] [Google Scholar]
  • Ruggieri, L. et al. Recovery of organic wastes in the Spanish wine industry. Technical, economic and environmental analyses of the composting process. J. Clean. Prod. 17, 830-838 (2009) [CrossRef] [Google Scholar]
  • Martínez, A. J. M. Gestión y manejo del sistema vitivinícola mediterráneo. estrategias para la reducción de la emisión de gases de efecto invernadero y adaptación de la viña al cambio climatico. 1–254 (2015) [Google Scholar]
  • Sundberg, C. Improving Compost Process Efficiency by Controlling Aeration, Temperature and pH. (Swedish University of Agricultural Sciences, 2005) [Google Scholar]
  • Van der Wurff, A. W. G., Fuchs, J. G., Raviv, M. & Termorshuizen, A. Handbook for composting and compost use in organic horticulture (2016) doi:10.18174/375218 [CrossRef] [Google Scholar]
  • Oliveira, M. & Duarte, E. Integrated approach to winery waste: waste generation and data consolidation. Front. Environ. Sci. Eng. 10, 168-176 (2016) [CrossRef] [Google Scholar]
  • Servicio Agricola y Ganadero. Informe Final Producción de Vinos 2021 (2021) [Google Scholar]
  • Bustamante, M. A. et al. Co-composting of distillery and winery wastes with sewage sludge. Water Sci. Technol. 56, 187-192 (2007). [CrossRef] [PubMed] [Google Scholar]
  • D. A. USA, Métodos de prueba para el examen de compostaje y compost 2, 1-27 (2002) [Google Scholar]
  • I. N. de Normalización. Norma Chilena de compostaje 2880:2015, INN, 15 (2015) [Google Scholar]
  • E. Bertran, X. Sort, M. Soliva, I. Trillas, Compostaje de residuos de bodega: Lodos y raspones de uva, BT 95, 203-208 (2004) [Google Scholar]
  • M. A. Bustamante, C. Paredes, J. Morales, A. M. Mayoral, R. Moral, Estudio del proceso de compostaje de residuos de bodegas y destilerías mediante técnicas multivariantes, Tec. Bioam 100, 4766-4772 (2009) [CrossRef] [Google Scholar]
  • J.M. Lynch. Substrate availability in the production of composts. H.A.J. Hoitink, H.M. Keener (Eds.). “Science and Engineering of Composting: Design, Environmental, Microbiological and Utilization Aspects” Renaissance Publications, Columbus, OH (1993), pp. 24-35 [Google Scholar]
  • Tuomela, M., Vikman, M., Hatakka, A., & Itävaara, M. “Biodegradation of lignin in a compost environment: A review”. Bioresource Technology 72 (2000), 169–183 [CrossRef] [Google Scholar]
  • Yedro, Florencia M., Juan García-Serna, Danilo A. Cantero, Francisco Sobrón, and M. José Cocero. “Hydrothermal Fractionation of Grape Seeds in Subcritical Water to Produce Oil Extract, Sugars and Lignin.” Catalysis Today 257 (2015), pp. 160–168 [CrossRef] [Google Scholar]
  • D. Moldes, P.P. Gallego, S. Rodriguez Couto, A. Sanroman. “Grape seeds: the best lignocellulosic waste to produce laccase by solid state cultures of Trametes hirsute”. Biotechnol. Lett. 25 (2003), pp. 491–495 [CrossRef] [Google Scholar]
  • M. Spanghero, A.Z.M. Salem, P.H. Robinson. “Chemical composition, including secondary metabolites, and rumen fermentability of seeds and pulp of Californian (USA) and Italian grape pomaces”. Anim. Feed Sci. Technol. 152 (2009), pp. 243–255 [CrossRef] [Google Scholar]
  • Marešová K., Kollárová M. Influence of compost covers on the efficiency of biowaste composting process. Waste Manag. 2010 Dec 30(12):2469-74. doi: 10.1016/j.wasman.2010.06.014. PMID: 20643536 [CrossRef] [Google Scholar]
  • Pandey A.K., Gaind S., Ali A., Nain L. Effect of bioaugmentation and nitrogen supplementation on composting of paddy straw. Biodegradation. 2009 Jun 20(3):293-306. doi: 10.1007/s10532-008-9221-3. Epub 2008 Oct 4. PMID: 18839317 [CrossRef] [PubMed] [Google Scholar]
  • S. Gaind. Effect of fungal consortium and animal manure amendments on phosphorus fractions of paddy-straw compost. Int. Biodeterior. Biodegrad (2014) [Google Scholar]
  • C.G. Bannick, R.G. Joergensen Change in N fractions during composting of wheat straw Biol. Fertil. Soils 16 (1993), pp. 269–274 [CrossRef] [Google Scholar]
  • Bueno, P., Díaz, J. & Cabrera, F. Factores que afectan al proceso de Compostaje. in Compostaje (Mundi Prensa Libros SA., 2008) [Google Scholar]
  • Schoebitz, M. & Vidal, G. Microbial consortium and pig slurry to improve chemical properties of degraded soil and nutrient plant uptake. J. Soil Sci. Plant Nutr. 16, 226-236 (2016) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.