Open Access
Issue |
BIO Web Conf.
Volume 59, 2023
2023 5th International Conference on Biotechnology and Biomedicine (ICBB 2023)
|
|
---|---|---|
Article Number | 01002 | |
Number of page(s) | 4 | |
Section | Biotechnology and Cell Structure Analysis | |
DOI | https://doi.org/10.1051/bioconf/20235901002 | |
Published online | 08 May 2023 |
- Jeong, D., Klocke, M., Agarwal, S., Kim, J., Choi, S., Franco, E., and Kim, J. (2019) Cell-Free Synthetic Biology Platform for Engineering Synthetic Biological Circuits and Systems. Methods Protoc 2 [PubMed] [Google Scholar]
- Tinafar, A., Jaenes, K., and Pardee, K. (2019) Synthetic Biology Goes Cell-Free. BMC Biol 17, 64 [CrossRef] [PubMed] [Google Scholar]
- Hong, S. H. (2019) ‘Cell-Free Synthetic Biology’: Synthetic Biology Meets Cell-Free Protein Synthesis. Methods Protoc 2 [PubMed] [Google Scholar]
- Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., and Piddock, L. J. V. (2015) Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology 13, 42–51 [CrossRef] [PubMed] [Google Scholar]
- Jin, X., Kightlinger, W., and Hong, S. H. (2019) Optimizing Cell-Free Protein Synthesis for Increased Yield and Activity of Colicins. Methods and Protocols 2, 28 [CrossRef] [PubMed] [Google Scholar]
- Cotter, P. D., Ross, R. P., and Hill, C. (2013) Bacteriocins — a viable alternative to antibiotics? Nature Reviews Microbiology 11, 95–105 [CrossRef] [PubMed] [Google Scholar]
- Bahar, A. A., and Ren, D. (2013) Antimicrobial peptides. Pharmaceuticals (Basel) 6, 1543–1575 [CrossRef] [PubMed] [Google Scholar]
- Jin, X., and Hong, S. H. (2018) Cell-free protein synthesis for producing ‘difficult-to-express’ proteins. Biochemical Engineering Journal 138, 156–164 [CrossRef] [Google Scholar]
- Liu, W.-Q., Zhang, L., Chen, M., and Li, J. (2019) Cell-free protein synthesis: Recent advances in bacterial extract sources and expanded applications. Biochemical Engineering Journal 141, 182–189 [CrossRef] [Google Scholar]
- Karim, A. S., and Jewett, M. C. (2018) Chapter Two - Cell-Free Synthetic Biology for Pathway Prototyping. in Methods in Enzymology (Scrutton, N. ed.), Academic Press. pp 31–57 [CrossRef] [PubMed] [Google Scholar]
- Cascales, E., Buchanan, S. K., Duché, D., Kleanthous, C., Lloubès, R., Postle, K., Riley, M., Slatin, S., and Cavard, D. (2007) Colicin Biology. Microbiology and Molecular Biology Reviews 71, 158–229 [CrossRef] [PubMed] [Google Scholar]
- Kienker, P. K., Jakes, K. S., and Finkelstein, A. (2008) Identification of channel-lining amino acid residues in the hydrophobic segment of colicin Ia. J Gen Physiol 132, 693–707 [CrossRef] [PubMed] [Google Scholar]
- Jin, X., Kightlinger, W., Kwon, Y.-C., and Hong, S. H. (2018) Rapid production and characterization of antimicrobial colicins using Escherichia coli-based cell-free protein synthesis. Synthetic Biology 3 [Google Scholar]
- Lenton, T. M., Rockström, J., Gaffney, O., Rahmstorf, S., Richardson, K., Steffen, W., and Schellnhuber, H. J. (2019) Climate tipping points - too risky to bet against. Nature 575, 592–595 [CrossRef] [PubMed] [Google Scholar]
- Eriksen, M., Lebreton, L. C. M., Carson, H. S., Thiel, M., Moore, C. J., Borerro, J. C., Galgani, F., Ryan, P. G., and Reisser, J. (2014) Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLOS ONE 9, e111913 [Google Scholar]
- Xu, S., Ma, J., Ji, R., Pan, K., and Miao, A. J. (2020) Microplastics in aquatic environments: Occurrence, accumulation, and biological effects. Sci Total Environ 703, 134699 [CrossRef] [PubMed] [Google Scholar]
- Vethaak, A. D., and Legler, J. (2021) Microplastics and human health. Science 371, 672–674 [CrossRef] [PubMed] [Google Scholar]
- Opgenorth, P. H., Korman, T. P., and Bowie, J. U. (2016) A synthetic biochemistry module for production of bio-based chemicals from glucose. Nature Chemical Biology 12, 393–395 [CrossRef] [PubMed] [Google Scholar]
- Ni, S., Yao, H., Wang, L., Lu, J., Jiang, F., Lu, A., and Zhang, G. (2017) Chemical Modifications of Nucleic Acid Aptamers for Therapeutic Purposes. International Journal of Molecular Sciences 18, 1683 [CrossRef] [PubMed] [Google Scholar]
- Burgess, K., and Cook, D. (2000) Syntheses of Nucleoside Triphosphates. Chemical Reviews 100, 2047–2060 [CrossRef] [PubMed] [Google Scholar]
- Fehlau, M., Kaspar, F., Hellendahl, K. F., Schollmeyer, J., Neubauer, P., and Wagner, A. (2020) Modular Enzymatic Cascade Synthesis of Nucleotides Using a (d)ATP Regeneration System. Frontiers in Bioengineering and Biotechnology 8 [PubMed] [Google Scholar]
- Lu, Y. (2017) Cell-free synthetic biology: Engineering in an open world. Synth Syst Biotechnol 2, 23–27 [CrossRef] [PubMed] [Google Scholar]
- Foshag, D., Henrich, E., Hiller, E., Schäfer, M., Kerger, C., Burger-Kentischer, A., Diaz-Moreno, I., García-Mauriño, S. M., Dötsch, V., Rupp, S., and Bernhard, F. (2018) The E. coli S30 lysate proteome: A prototype for cell-free protein production. N Biotechnol 40, 245–260 [Google Scholar]
- de Lorenzo, V., and Schmidt, M. (2018) Biological standards for the Knowledge-Based BioEconomy: What is at stake. New Biotechnology 40, 170–180 [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.