Open Access
BIO Web Conf.
Volume 60, 2023
2022 4th International Conference on Biotechnology and Food Science (BFS 2022)
Article Number 01002
Number of page(s) 9
Section Biochemical Application and Genetic Engineering
Published online 11 May 2023
  • Anjaiah V Koedam N, Nowak-Thompson B, Loper JE, Hofte M, Tambong JT et al. (1998). Involvement of phenazines and anthranilate in the antagonism of Pseudomonas aeruginosa PNA1 and Tn5-derivatives towards Fusarium sp. and Pythium sp. Mol PlantMicrobe Interact 11: 847–854. [CrossRef] [Google Scholar]
  • Arnau, V. G., Sánchez, L. A., and Delgado, O. D. (2015) Pseudomonas yamanorum sp. nov., a psychrotolerant bacterium isolated from a subantarctic environment. Int J Syst Evol Microbiol 65: 424–431. [CrossRef] [PubMed] [Google Scholar]
  • Bilal M Guo S, Iqbal HMN, Hu H, Wang W, Zhang X. (2017) Engineering Pseudomonas for phenazine biosynthesis, regulation, and biotechnological applications: a review. World J Microbiol Biotechnol. 3;33(10):191. doi: 10.1007/s11274-0172356-9. PMID: 28975557. [CrossRef] [PubMed] [Google Scholar]
  • Blankenfeldt, W., (2013) The biosynthesis of phenazines. In: Chincholkar, S., Thomashow, L. (Eds.), Microbial Phenazines. Springer, Berlin Heidelberg, pp. 117. [Google Scholar]
  • Brencic A McFarland KA, McManus HR, et al. (2009) The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Molecular Microbiology.; 73(3): 434-445. doi: 10.1111/j.13652958.2009.06782.x. PMID: 19602144; PMCID: PMC2761719. [CrossRef] [PubMed] [Google Scholar]
  • Cheluvappa, R., (2014) Standardized chemical synthesis of Pseudomonas aeruginosa pyocyanin. MethodsX 1, 67–73. [CrossRef] [PubMed] [Google Scholar]
  • Chin-A-Woeng T.F., van den Broke, D., de Voer, G., van der Drift, K.M., Tuinman, S., Thomas-Oates, J.E., et al., (2001) Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by mutiple factors secreted into the growth medium. Mol. Plant Microbe Interact. 14, 969–979. [CrossRef] [PubMed] [Google Scholar]
  • Chin-A-Woeng TF, Bloemberg GV, van der Bij AJ, van der Drift KM, Schripsema J, Kroon B, Scheffer RJ, Keel C, Bakker PA, Tichy HV, de Bruijn FJ. (1998) Biocontrol by phenazine-1-carboxamideproducing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant Microbe Interact. 11:1069–77. [CrossRef] [Google Scholar]
  • Daval S Lebreton L, Gazengel K, Boutin M, Guillerm-Erckelboudt AY, Sarniguet A. (2011) The biocontrol bacterium Pseudomonas fluorescens Pf29Arp strain affects the pathogenesis-related gene expression of the take-all fungus Gaeumannomyces graminis var. tritici on wheat roots. Mol Plant Pathol. 12:839–54. [CrossRef] [PubMed] [Google Scholar]
  • Du, X., Li, Y., Zhou, W. et al. (2013) Phenazine-1carboxylic acid production in a chromosomally nonscar triple-deleted mutant Pseudomonas aeruginosa using statistical experimental designs to optimize yield. Appl Microbiol Biotechnol 97, 7767–7778. [CrossRef] [PubMed] [Google Scholar]
  • Du, X., Li, Y., Zhou, Q. et al. (2015) Regulation of gene expression in Pseudomonas aeruginosa M18 by phenazine-1-carboxylic acid. Appl Microbiol Biotechnol 99, 813–825. [CrossRef] [PubMed] [Google Scholar]
  • Gurusiddaiah, S., Weller, D., Sarkar, A., and Cook, R. (1986) Characterization of an antibiotic produced by a strain of Pseudomonas fluorescens inhibitory to Gaeumannomyces graminis var tritici and Pythium spp. Antimicrob Agents Chemother 29: 488–495. [CrossRef] [PubMed] [Google Scholar]
  • Guttenberger N Blankenfeldt W, Breinbauer R (2017) Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products. Bioorg Med Chem S0968-0896:31180–31844 [Google Scholar]
  • Huang JF Xu YQ, Zhang HY, Li YQ, Huang XQ, Ren B, Zhang XH (2009) Temperature-dependent expression of phzM and its regulatory genes lasI and ptsP in rhizosphere isolate Pseudomonas sp. strain M18. Appl Environ Microbiol 75:6568–6580 [CrossRef] [PubMed] [Google Scholar]
  • Karine L Mario S, Frédéric HTA, Dieter H (2008) Gac/Rsm signal transduction pathway of rproteobacteria: from RNA recognition to regulation of social behaviour. Mol Microbiol 67:241–253 [PubMed] [Google Scholar]
  • Li Y Du X, Lu ZJ, Wu D, Zhao Y, et al. (2011) Regulatory Feedback Loop of Two phz Gene Clusters through 59-Untranslated Regions in Pseudomonas sp. M18. PLoS ONE 6(4): e19413. doi:10.1371/journal.pone.0019413 [CrossRef] [Google Scholar]
  • Mavrodi, D. V., Peever, T. L., Mavrodi, O. V., Parejko, J. A., Raaijmakers, J. M., Lemanceau, P., et al. (2010) Diversity and evolution of the Phenazine biosynthesis pathway. Appl Environ Microbiol 76: 866–879. [CrossRef] [PubMed] [Google Scholar]
  • Morrison, C. K., Arseneault, T., Novinscak, A., and Filion, M. (2016) Phenazine-1-carboxylic acid production by Pseudomonas fluorescens LBUM636 alters Phytophthora infestans growth and late blight development. Phytopathology 107: 273–279. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.