Open Access
Issue
BIO Web Conf.
Volume 60, 2023
2022 4th International Conference on Biotechnology and Food Science (BFS 2022)
Article Number 01003
Number of page(s) 4
Section Biochemical Application and Genetic Engineering
DOI https://doi.org/10.1051/bioconf/20236001003
Published online 11 May 2023
  • Chen, K., et al., Methyltransferase SETD2-Mediated Methylation of STAT1 Is Critical for Interferon Antiviral Activity. Cell, 2017. 170(3): p. 492-+. [CrossRef] [PubMed] [Google Scholar]
  • D’Avella, C., et al., Mutations in renal cell carcinoma. Urol Oncol, 2020. 38(10): p. 763-773. [CrossRef] [PubMed] [Google Scholar]
  • de Cubas, A.A. and W.K. Rathmell, Epigenetic modifiers: activities in renal cell carcinoma. Nat Rev Urol, 2018. 15(10): p. 599-614. [CrossRef] [PubMed] [Google Scholar]
  • Hacker, K.E., et al., Structure/Function Analysis of Recurrent Mutations in SETD2 Protein Reveals a Critical and Conserved Role for a SET Domain Residue in Maintaining Protein Stability and Histone H3 Lys-36 Trimethylation. Journal of Biological Chemistry, 2016. 291(40): p. 21283-21295. [CrossRef] [Google Scholar]
  • Huang, K.K., et al., SETD2 histone modifier loss in aggressive GI stromal tumours. Gut, 2016. 65(12): p. 1960-1972. [CrossRef] [PubMed] [Google Scholar]
  • Kanu, N., et al., SETD2 loss-of-function promotes renal cancer branched evolution through replication stress and impaired DNA repair. Oncogene, 2015. 34(46): p. 5699-5708. [CrossRef] [PubMed] [Google Scholar]
  • Lee, J.J.-K., et al., Tracing Oncogene Rearrangements in the Mutational History of Lung Adenocarcinoma. Cell, 2019. 177(7): p. 1842-+. [CrossRef] [PubMed] [Google Scholar]
  • Liu, J., et al., Loss of SETD2 Induces a Metabolic Switch in Renal Cell Carcinoma Cell Lines toward Enhanced Oxidative Phosphorylation. Journal of Proteome Research, 2019. 18(1): p. 331-340. [PubMed] [Google Scholar]
  • Li, F., et al., The Histone Mark H3K36me3 Regulates Human DNA Mismatch Repair through Its Interaction with MutS alpha. Cell, 2013. 153(3): p. 590-600. [CrossRef] [PubMed] [Google Scholar]
  • Li, H., et al., LncRNA HOTAIR promotes human liver cancer stem cell malignant growth through downregulation of SETD2. Oncotarget, 2015. 6(29): p. 27847-27864. [CrossRef] [PubMed] [Google Scholar]
  • Miller, D.C., et al., Contemporary Clinical Epidemiology of Renal Cell Carcinoma: Insight from a Population Based Case-Control Study. Journal of Urology, 2010. 184(6): p. 2254-2258. [CrossRef] [PubMed] [Google Scholar]
  • Moch, H., et al., The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs-Part A: Renal, Penile, and Testicular Tumours. Eur Urol, 2016. 70(1): p. 93-105. [CrossRef] [PubMed] [Google Scholar]
  • Park, I.Y., et al., Dual Chromatin and Cytoskeletal Remodeling by SETD2. Cell, 2016. 166(4): p. 950-962. [CrossRef] [PubMed] [Google Scholar]
  • Petitprez, F., et al., Review of Prognostic Expression Markers for Clear Cell Renal Cell Carcinoma. Front Oncol, 2021. 11: p. 643065. [CrossRef] [PubMed] [Google Scholar]
  • Pfister, S.X., et al., Inhibiting WEE1 Selectively Kills Histone H3K36me3-Deficient Cancers by dNTP Starvation. Cancer Cell, 2015. 28(5): p. 557-568. [CrossRef] [PubMed] [Google Scholar]
  • Rao, H., et al., Multilevel Regulation of beta-Catenin Activity by SETD2 Suppresses the Transition from Polycystic Kidney Disease to Clear Cell Renal Cell Carcinoma. Cancer Research, 2021. 81(13): p. 3554-3567. [CrossRef] [PubMed] [Google Scholar]
  • Rao, H., et al., Di-Ras2 promotes renal cell carcinoma formation by activating the mitogen-activated protein kinase pathway in the absence of von Hippel-Lindau protein. Oncogene, 2020. 39(19): p. 3853-3866. [CrossRef] [PubMed] [Google Scholar]
  • Sakthikumar, S., et al., SETD2 Is Recurrently Mutated in Whole-Exome Sequenced Canine Osteosarcoma. Cancer Research, 2018. 78(13): p. 3421-3431. [CrossRef] [PubMed] [Google Scholar]
  • Sato, Y., et al., Integrated molecular analysis of clearcell renal cell carcinoma. Nature Genetics, 2013. 45(8): p. 860-U191. [CrossRef] [PubMed] [Google Scholar]
  • Walter, D.M., et al., Systematic In Vivo Inactivation of Chromatin-Regulating Enzymes Identifies Setd2 as a Potent Tumor Suppressor in Lung Adenocarcinoma. Cancer Research, 2017. 77(7): p. 1719-1729. [CrossRef] [PubMed] [Google Scholar]
  • Yuan, H., et al., Histone methyltransferase SETD2 modulates alternative splicing to inhibit intestinal tumorigenesis. Journal of Clinical Investigation, 2017. 127(9): p. 3381-3397. [Google Scholar]
  • Zhang, Y., et al., H3K36 Histone Methyltransferase Setd2 Is Required for Murine Embryonic Stem Cell Differentiation toward Endoderm. Cell Reports, 2014. 8(6): p. 1989-2002. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.