Open Access
BIO Web Conf.
Volume 68, 2023
44th World Congress of Vine and Wine
Article Number 04007
Number of page(s) 10
Section Health
Published online 23 November 2023
  • C.M. Oliveira, A.C. Ferreira, V. De Freitas, et al. Oxidation mechanisms occurring in wines. Food Res Int 44, 1115–1126 (2011) [CrossRef] [Google Scholar]
  • P. Ribereau-Gayon, Y. Glories, A. Maujean, et al. Handbook of enology: the chemistry of wine stabilization andtreatments (2o Edición, Vol. 2) (2006) [CrossRef] [Google Scholar]
  • P. Ribereau-Gayon, D. Dubourdieu, B. Doneche, et al. Handbook of Enology Volume 1 The Microbiology of Wine and Vinifications 2nd Edition. (2006) [Google Scholar]
  • S. Giacosa, A. Río Segade, E. Cagnasso, et al. SO2 in wines: rational use and possible alternatives. In: Red Wine Technology, 309–321 (2018) [Google Scholar]
  • K. Prabhakar, E.N. Mallika. Preservatives: Permitted Preservatives - Sulfur Dioxide. Encycl Food Microbiol Second Ed. 3, 108–112 (2014) [Google Scholar]
  • T. Garde-Cerdán, A.R. Marsellés-Fontanet, M. Arias-Gil et al. Influence of SO2 on the evolution of volatile compounds through alcoholic fermentation of must stabilized by pulsed electric fields. Eur Food Res Technol 227, 401–408 (2008) [CrossRef] [Google Scholar]
  • H. Vally, N.L-A. Misso, V. Madan. Clinical effects of sulphite additives. Clin Exp Allergy 39, 1643–1651 (2009) [CrossRef] [PubMed] [Google Scholar]
  • R.F. Guerrero & E. Cantos-Villar. Demonstrating the efficiency of sulphur dioxide replacements in wine: a parameter review. Trends Food Sci Technology 42, 27–43 (2015) [CrossRef] [Google Scholar]
  • EFSA. Scientific Opinion on the re‐evaluation of sulfur dioxide (E 220), sodium sulfite (E 221), sodium bisulfite (E 222), sodium metabisulfite (E 223), potassium metabisulfite (E 224), calcium sulfite (E 226), calcium bisulfite (E 227) and potassium bisulfite. EFSA J 14, 4438 (2016) [Google Scholar]
  • OIV. International code of oenological practices. Paris (2021) [Google Scholar]
  • S. Van Wyk, F.V.M. Silva. Nonthermal Preservation of Wine. Elsevier Inc. Epub ahead of print. DOI: 10.1016/B978-0-12-816685-7.00007-0 (2019) [Google Scholar]
  • L. Gracin, A.R. JambrakJuretic, H. Juretic et al. Influence of high power ultrasound on Brettanomyces and lactic acid bacteria in wine in continuous flow treatment. Appl Acoust 103, 143–147 (2015) [Google Scholar]
  • E. Silva., High pressure processing effect on microorganisms in fruit and vegetable products. In: CRC Press: Boca Raton, FL U (ed) High Pressure Processing ofFruit and Vegetable Juices. London, UK; New York, NY, USA, 3–37 (2018) [Google Scholar]
  • V. Falguera, M. Forns, A. Ibarz. UV - vis irradiation: an alternative to reduce SO2 in white wines? LWT - Food Sci Technol 51, 59–64 (2013) [CrossRef] [Google Scholar]
  • P.M. Izquierdo-Cañas, E. García-Romero, B. Huertas-Nebreda et al. Colloidal silver complex as an alternative to sulphur dioxide in winemaking. Food Control 23, 73–81 (2012) [CrossRef] [Google Scholar]
  • M.C. Santos, C. Nunes, J.A. Saraiva et al. Chemical and physical methodologies for the replacement/reduction of sulfur dioxide use during winemaking: review of their potentialities and limitations. Eur Food Res Technol 234, 1–12 (2012) [CrossRef] [Google Scholar]
  • L. Marchante, A. Mena, P.M. Izquierdo-Cañas et al. Effects of the pre-fermentative addition of chitosan on the nitrogenous fraction and the secondary fermentation products of SO2-free red wines. J Sci Food Agric 101, 1143–1149 (2021) [CrossRef] [PubMed] [Google Scholar]
  • B. Rojo-Bezares, Y. Sáenz, M. Zarazaga et al. Antimicrobial activity of nisin against Oenococcus oeni and other wine bacteria. Int J Food Microbiol 116, 32–36 (2007) [CrossRef] [PubMed] [Google Scholar]
  • S. Windholtz, P. Redon, S. Lacampagne et al. Non- Saccharomyces yeasts as bioprotection in the composition of red wine and in the reduction of sulfur dioxide. LWT - Food Sci Technol 149, 111781 (2021) [CrossRef] [Google Scholar]
  • I. López, P. Santamaría, C. Tenorio et al. Evaluation of lysozyme to control vinification process and histamine production in Rioja wines. J Microbiol Biotechnol 19, 1005–1012 (2009) [CrossRef] [PubMed] [Google Scholar]
  • OIV. Resolución OIV-OENO 445-2015 Tratamientos de los mostos con glutatión. OENO (2015) [Google Scholar]
  • E.M. González-Rompinelli, J.J. Rodríguez-Bencomo, A. García-Ruiz et al. A winery-scale trial of the use of antimicrobial plant phenolic extracts as preservatives during wine ageing in barrels. Food Control 33, 440–447 (2013) [CrossRef] [Google Scholar]
  • M.I. Salaha, S. Kallithraka, I. Marmaras et al. A natural alternative to sulphur dioxide for red wine production: Influence on colour, antioxidant activity and anthocyanin content. J Food Compos Anal 21, 660–666 (2008) [CrossRef] [Google Scholar]
  • M.J. Cejudo-Bastante, F. Sonni, F. Chinnici et al. Fermentation of sulphite-free white musts with added lysozyme and oenological tannins: Nitrogen consumption and biogenic amines composition of final wines. LWT - Food Sci Technol. 43, 1501–1507 (2010) [CrossRef] [Google Scholar]
  • M.J. Ruiz-Moreno, R. Raposo, J.M. Moreno-Rojas et al. Efficacy of olive oil mill extract in replacing sulfur dioxide in wine model. LWT - Food Sci Technol 61, 117–123 (2015) [CrossRef] [Google Scholar]
  • F.J. Barba, Z. Zhu, M. Koubaa et al. Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends Food Sci Technol 49, 96–109 (2016) [CrossRef] [Google Scholar]
  • M.I. Fernández-Marín, R. Mateos, M.C. García-Parrilla et al. Bioactive compounds in wine: Resveratrol, hydroxytyrosol and melatonin: A review. Food Chem 130, 797–813 (2012) [CrossRef] [Google Scholar]
  • F. Visioli, S.A. Panaite, J. Tomé-Carneiro. Wine’s phenolic compounds and health: a pythagorean view. Molecules 25, 4105 (2020) [CrossRef] [PubMed] [Google Scholar]
  • J. Armengol Fortí. Enfermedades fúngicas de la madera de la vid. Una visión general del problema. Enoviticultura 46, 6–15 (2017) [Google Scholar]
  • S. Cruz, R. Raposo, M.J. Ruiz-Moreno et al. Grapevine-shoot stilbene extract as a preservative in white wine. Food Packag Shelf Life 18, 164–172 (2018) [CrossRef] [Google Scholar]
  • R. Raposo, M.J. Ruiz-Moreno, T. Garde-Cerdán et al. Replacement of sulfur dioxide by hydroxytyrosol in white wine: Influence on both quality parameters and sensory. LWT - Food Sci Technol. 65, 214–221(2016) [CrossRef] [Google Scholar]
  • B. Biais, S. Krisa, S. Cluzet et al. Antioxidant and cytoprotective activities of grapevine stilbenes. J Agric Food Chem 65, 4952–4960 (2017) [CrossRef] [PubMed] [Google Scholar]
  • R.F. Guerrero, B. Puertas, M.I. Fernández et al. Induction of stilbenes in grapes by UV-C: Comparison of different subspecies of Vitis. Innov Food Sci Emerg Technol 11, 231–238 (2010) [CrossRef] [Google Scholar]
  • R. Gutiérrez-Escobar, M.I. Fernández-Marín, T. Richard et al. Development and characterization of a pure stilbene extract from grapevine shoots for use as a preservative in wine. Food Control. 121, 107684 (2021) [CrossRef] [Google Scholar]
  • C. Cebrián-Tarancón, R. Sánchez-Gómez, J.C. Carot, A. Zalacain, L.A. Gonzalo. Assessment of vine-shoots in a model wines as enological additives. Food Chem 288, 86–95 (2019) [CrossRef] [PubMed] [Google Scholar]
  • A. García-Ruiz, C. Cueva, E.M. González-Rompinelli et al. Antimicrobial phenolic extracts able to inhibit lactic acid bacteria growth and wine malolactic fermentation. Food Control 28, 212–219 (2012) [CrossRef] [Google Scholar]
  • EFSA. Scientific opinion on genotoxicity testing strategies applicable to food and feed safety assessment. EFSA J. 9, 2379,69 (2011) [Google Scholar]
  • C. Medrano-Padial, A.I. Prieto, M. Puerto et al. In vitro assessment of the mutagenic and genotoxic potential of a pure stilbene extract. Food Chem Toxicol (2021) 150, 112065 (2021) [CrossRef] [PubMed] [Google Scholar]
  • C. Medrano-Padial, M. Puerto, A.I. Prieto et al. In vivo genotoxicity evaluation of a stilbene extract prior to Its use as a natural additive: a combination of the micronucleus Test and The Comet Assay. Foods 10, 439 (2021) [CrossRef] [PubMed] [Google Scholar]
  • R. Gutiérrez-Escobar, M.J. Aliaño-González, A. Marrufo-Curtido et al. Sulfur dioxide-free Verdejo wines through the use of a pure stilbene extract: exploring possible synergistic effect with glutathione. J Sci Food Agric. 103, 1152–1160 (2022) [Google Scholar]
  • OIV. Compendium of international 1methods of wine and must analysis. Paris (2021) [Google Scholar]
  • R. Gutiérrez-Escobar, J.M. Aliaño, I. Le Mao, et al. Grapevine shoots extract as an alternative to SO2 in rosé wines. A double approach: classical measurements and 1H-NMR metabolomics. Food Control. 152, 109681 (2023) [Google Scholar]
  • R.F. Guerrero, A. Liazid, M. Palma et al. Phenolic characterisation of red grapes autochthonous to Andalusia. Food Chem. 112, 949–955 (2009) [CrossRef] [Google Scholar]
  • A. Vallverdú-Queralt, A. Verbaere, E. Meudec et al. Straightforward method to quantify GSH, GSSG, GRP, and hydroxycinnamic acids in wines by UPLC-MRM-MS. J Agric Food Chem 63, 142–149 (2015) [CrossRef] [PubMed] [Google Scholar]
  • I. Le Mao, J. Martin-Pernier, C. Bautista et al. 1H-NMR Metabolomics as a Tool for Winemaking Monitoring. Molecules 26, 1–13 (2021) [Google Scholar]
  • I. Le Mao, G. Da Costa, C. Bautista et al. Application of 1H NMR metabolomics to French sparkling wines. Food Control 145, 109423 (2023) [CrossRef] [Google Scholar]
  • V. Filip, M. Plocková, J. Šmidrkal et al. Resveratrol and its antioxidant and antimicrobial effectiveness. Food Chem. 83, 585–593 (2003) [CrossRef] [Google Scholar]
  • M. Du Toit, I.S. Pretorius. Microbial spoilage and preservation of wine: using weapons from nature’s own arsenal -a Review. South African J Enol Vitic. 21, 74–96 (2000) [Google Scholar]
  • OCDE. Guideline for the Testing of Chemicals 471: Bacterial Reverse Mutation Test. 1–23 (2020) [Google Scholar]
  • OCDE. Guideline for the Testing of Chemicals 487: In Vitro Mammalian Cell Micronucleus Test. 1–23 (2016) [Google Scholar]
  • OCDE. Guideline for the Testing of Chemical 474: Mammalian erythrocyte micronucleus test. 1–21 (2014) [Google Scholar]
  • OCDE. Guideline for the Testing of Chemical 489: In Vivo Mammalian Alkaline Comet Assay. 1–27 (2016) [Google Scholar]
  • Izquierdo-Cañas P.M., Mena-Morales A., Pérez-Navarro J., et al. Saturation of grape musts with CO2: A technique to reduce the use of SO2 in white wines. LWT - Food Sci Technol. 152, 112318 (2021) [CrossRef] [Google Scholar]
  • J.N. Jackowetz, S. Dierschke, R.M. De Orduña. Multifactorial analysis of acetaldehyde kinetics during alcoholic fermentation by Saccharomyces cerevisiae. Food Res Int. 44, 310–316 (2011) [CrossRef] [Google Scholar]
  • M.E. Alañón, M.C. Díaz-Maroto, M.S. Pérez-Coello MS. New strategies to improve sensorial quality of white wines by wood contact. Beverages 4, 1–11 (2018) [Google Scholar]
  • M.S. García-Falcón, C. Pérez-Lamela, E. Martínez-Carballo et al. Determination of phenolic compounds in wines: Influence of bottle storage of young red wines on their evolution. Food Chem 105, 248–259 (2007) [CrossRef] [Google Scholar]
  • S. Kallithraka, M.I. Salacha, I. Tzourou. Changes in phenolic composition and antioxidant activity of white wine during bottle storage: Accelerated browning test versus bottle storage. Food Chem. 113, 500–505 (2009) [CrossRef] [Google Scholar]
  • X. Lyu, D.R. Prado, L.D. Araujo et al. Effect of glutathione addition at harvest on Sauvignon Blanc wines. Aust J ofGrape Wine Res. 27, 431–441 (2021) [CrossRef] [Google Scholar]
  • V. Webber, S. Valduga, F. Rodrigues et al. Effect of glutathione during bottle storage of sparkling wine. Food Chem. 216, 254–259 (2017) [CrossRef] [Google Scholar]
  • I. Le Mao, G. Da Costa, T. Richard. 1H-NMR metabolomics for wine screening and analysis. OENOOne 57, 15–31 (2023) [Google Scholar]
  • A. Lonvaud. Bacterias lácticas y fermentación malolactica (FML). Wine Internet Tech J. 5, 1–7 (2002) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.