Open Access
Issue |
BIO Web Conf.
Volume 85, 2024
3rd International Conference on Research of Agricultural and Food Technologies (I-CRAFT-2023)
|
|
---|---|---|
Article Number | 01009 | |
Number of page(s) | 6 | |
Section | Research of Agricultural and Food Technologies | |
DOI | https://doi.org/10.1051/bioconf/20248501009 | |
Published online | 09 January 2024 |
- Song, G.-Q. Blueberry (Vaccinium corymbosum L.). In Agrobacterium Protocols; Wang, K., Ed.; Springer: New York, NY, USA; Volume 2, pp. 121–131 (2015) [CrossRef] [PubMed] [Google Scholar]
- Hancock, J.F.; Luby, J.J.; Beaudry, R. Fruits of temperate climates/Fruits of the Ericaceae. In Encyclopedia of Food Science, Food Technology and Nutrition, 2nd ed.; Trugo, L., Finglas, P.M., Caballero, B., Eds.; Academic Press: London, UK, pp. 2762–2768 (2003) [CrossRef] [Google Scholar]
- Zarei, A., Erfani-Moghadam, J. & Mozaffari. M. Phylogenetic analysis among some pome fruit trees of Rosaceae family using RAPD markers. Biotechnology & Biotechnological Equipment, 31(2):289-298 (2017). [CrossRef] [Google Scholar]
- Hummer, K. E., & Janick, J. Rosaceae: taxonomy, economic importance, genomics. Genetics and genomics of Rosaceae, 1-17 (2009). [Google Scholar]
- Du, X., Finn, C., & Qian, M. C. Distribution of volatile composition in ‘Marion’(Rubus species hyb) blackberry pedigree. Journal of agricultural and food chemistry, 58(3), 1860-1869 (2010). [CrossRef] [PubMed] [Google Scholar]
- Yuan, H., Ma, Q., Ye, L., & Piao, G. The traditional medicine and modern medicine from natural products. Molecules, 21(5), 559 (2016). [CrossRef] [PubMed] [Google Scholar]
- Winter, J. M., & Tang, Y. Synthetic biological approaches to natural product biosynthesis. Current opinion in biotechnology, 23(5), 736-743 (2012) [CrossRef] [PubMed] [Google Scholar]
- Debnath, S.; Sion, M. Genetic diversity, antioxidant activities, and anthocyanin contents in lingonberry. Int. J. Fruit Sci., 9, 185–199. (2009) [CrossRef] [Google Scholar]
- Reyes‐Carmona, J., Yousef, G. G., Martínez‐Peniche, R. A., & Lila, M. A. Antioxidant capacity of fruit extracts of blackberry (Rubus sp.) produced in different climatic regions. Journal of food science, 70(7), s497-s503 (2005). [Google Scholar]
- Zia-Ul-Haq, M.; Riaz, M.; De Feo, V.; Jaafar, H.Z.E.; Moga, M. Rubus fruticosus L.: Constituents, Biological Activities and Health Related Uses. Molecules, 19, 10998–11029 (2014). [CrossRef] [PubMed] [Google Scholar]
- Barbieri, R., Coppo, E., Marchese, A., Daglia, M., Sobarzo-Sánchez, E., Nabavi, S. F., & Nabavi, S. M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiological research, 196, 44-68 (2017) [CrossRef] [PubMed] [Google Scholar]
- Botez, M., Badescu, G., & Botar, A. Cultura arbuştilor fructiferi. Ed. Ceres, Bucuresti, 186 (1984). [Google Scholar]
- Bray, M., Rom, C. C., & Clark, J. R. Propagation of thornless Arkansas blackberries by hardwood cuttings. Discovery, The Student Journal of Dale Bumpers College of Agricultural, Food and Life Sciences, 4(1), 9-13 (2003). [Google Scholar]
- Aguilera-Arango, G.A., Gómez-López, E.D. & González-Mejia. A. Callogénesisen cultivares híbridos de Cocos nucifera L. mediante cultivo in vitro de inflorescencias in maduras. Biotecnología Vegeta, l 19(4):277-284 (2019). [Google Scholar]
- Vaca, I. and Landázuri. y P. Evaluación de tres niveles de nitrógeno en medio de cultivo, en las fases de enraizamiento in vitro y adaptación a sustrato de Rubus glaucus (Benth). La Granja. Revista de Ciencias de la Vida, 18(2):48-54 (2013). [Google Scholar]
- Busby, A. L., and Himelrick, D. G. Propagation of blackberries (Rubus spp.) by stem cuttings using various IBA formulations. In VII International Symposium on Rubus and Ribes 505 (pp. 327-332) (1998). [Google Scholar]
- Dziedzic, E., and Jagła, J. Micropropagation of Rubus and Ribes spp. Protocols for micropropagation of selected economically important horticultural plants, 149-160 (2013). [Google Scholar]
- Taji, A., Prakash, N., & Lakshmanan, P. In vitro plant breeding. food products Press (2002). [Google Scholar]
- AbdAlla, M. M., & Mostafa, R. A. A. In Vitro Propagation of Blackberry (Rubus fruticosus L.). Assiut J. Agric. Sci, 46, (2015). [Google Scholar]
- Hunkova, J., Libiakova, G., & GAJDOŠOVÁ, A. Shoot proliferation ability of selected cultivars of Rubus spp. as influenced by genotype and cytokinin concentration. Journal of Central European Agriculture (2016). [Google Scholar]
- Hunková, J., Libiaková, G., Fejér, J., Vujović, T., & Gajdošová, A. Testing of different iron sources and concentrations on shoot multiplication of blackberry (Rubus fruticosus L.). Genetika, 50(1), 351-356 (2018). [CrossRef] [Google Scholar]
- Dewir, Y. H., Al-Ali, A. M., Rihan, H. Z., Alshahrani, T., Alwahibi, M. S., Almutairi, K. F., ... & Fuller, M. P. Effects of Artificial Light Spectra and Sucrose on the Leaf Pigments, Growth, and Rooting of Blackberry (Rubus fruticosus) Microshoots. Agronomy, 13(1), 89 (2022). [CrossRef] [Google Scholar]
- Murashige, T. Plant Propagation through Tissue Cultures. Annu. Rev. Plant Physiol., 25, 135–166 (1974). [CrossRef] [Google Scholar]
- Viswanath, M.; Ravindra Kumar, K.; Chetanchidambar, N.M.; Mahesh, S.S.N.M. Regeneration mechanisms in plant tissue culture: A. J. Pharm. Innov., 12, 2948–2952 (2023). [Google Scholar]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol. Plant., 15, 473–497 (1962) [CrossRef] [Google Scholar]
- Schuchovski, C.S.; Biasi, L.A. Development of an efficient protocol for ‘Brazos’ blackberry in vitro multiplication. Acta Hortic., 1224, 157–164 (2017) [Google Scholar]
- Fathy, H. M., Abou El-Leel, O. F., & Amin, M. A. Micropropagation and biomass production of Rubus fruticosus L.(blackberry) plant. Middle East J. Appl. Sci, 8, 1215-1228 (2018). [Google Scholar]
- Kefayeti, N.; Kafkas, E.; Erci¸sli, S. Micropropagation of ‘Chester thornless’ Blackberry Cultivar using Axillary Bud Explants. Not. Bot. Horti Agrobot. Cluj-Napoca, 47, 162–168 (2019) [Google Scholar]
- Gamborg, O.L. Cells, Protoplasts and Plant Regeneration in Culture. In Manual of Industrial Microbiology and Biotechnology; Demain, A.L., Salomon, N.A., Eds.; American Society for Microbiology: Washington, DC, USA,; pp. 263–273 (1986) [Google Scholar]
- Topcu, Ş., & Çölgeçen, H. Bitki sekonder metabolitlerinin biyoreaktörlerde üretilmesi. Türk Bilimsel Derlemeler Dergisi, (2), 9-29 (2015). [Google Scholar]
- Dinçer, D., Bekçi, B. ve Bekiryazıcı, F. Türkiye’deki doğal bitki türlerinin üretiminde doku kültürü tekniklerinin kullanımı. Nevşehir Bilim ve Teknoloji Dergisi TARGİD Özel Sayı, 295-302 (2016). [Google Scholar]
- Aktaş, T., & Çölgeçen, H. Farklı bitki türlerinden bitki doku kültürü teknikleriyle flavonoidlerin üretimi. Karaelmas Fen ve Mühendislik Dergisi, 7(2), 665-673 (2017). [Google Scholar]
- İçigen, H. Ö. (2019). Bitki doku kültürü yöntemi ile elde edilen bazı bitki türlerinin antimikrobiyal aktivitelerinin belirlenmesi. Yüksek Lisans Tezi, Kütahya Dumlupınar Üniversitesi, FBE, Kotahi. (2019). [Google Scholar]
- Dilmen, R., & Baydar, N. G. Yağ gülü (Rosa damascena Mill.)’nde doku kültürü uygulamaları. Ziraat Fakültesi Dergisi, 11(2), 134-141 (2016). [Google Scholar]
- Balı, E. A., Türkmen, O. S., Baytekin, G., Dardeniz, A. ve Şahin, E. Bazı üzüm çeşitlerinin doku kültürü yöntemiyle mikroçoğaltımı üzerine bir araştırma. ÇOMÜ LJAR, 1 (2), 30-35. (2020). [Google Scholar]
- Bürün, B. Bitki biyoçeşitliliğinin korunmasında biyoteknolojinin kullanımı ve Türkiye’deki çalışmalar. Eskişehir Technical University Journal of Science and Technology C- Life Sciences and Biotechnology, 3 (2), 1-16 (2021) [Google Scholar]
- Caldwell J. D. (Blackberry propagation. HortScience 2:193-195 (1984). [CrossRef] [Google Scholar]
- Singh, J. and Kumar, A. Plant tissue culture and its application in agriculture as biotechnological tool. International Journal of Current Microbiology and Applied Sciences, Special Issue (11), 274-284 (2020). [Google Scholar]
- Onay, A., Yıldırım, H., Pirinç, V., Tilkat, E., Çiftçi, Y. Ö., Akdemir, H. ve Kılınç, F. M. Bitkilerin biyoteknolojik yöntemlerle ticari çoğaltımı; mevcut ve gelecekteki durum. Journal of Life Sciences, 1 (2), 11-28 (2012). [Google Scholar]
- Bejaoui, R. (2022). Kalanşo (kalanchoe blossfieldiana poelln.)’nun ın vitro koşullarda mikroçoğaltımı. Doktora Tezi. Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Ankara (2022). [Google Scholar]
- Lakhera, K., Kumar, A., Rani, A., Dixit, R., & Rana, S. Plant tissue culture and its application. Bulletin of Pure & Applied Sciences- Botany 37 (6), 32-37 (2018). [CrossRef] [Google Scholar]
- Tefera, A. A.. Review on application of plant tissue culture in plant breeding. Journal of Natural Sciences Research 9(3), 20-25 (2019) [Google Scholar]
- García-Gonzáles R, Quiroz K, Caligari PDS, Carrasco B. Plant tissue culture: current status, opportunities and challenges. Ciencia e Investigación Agraria. ;37:5–30 (2010). [CrossRef] [Google Scholar]
- McInnes TB, Black L, Gatti JM. Disease-free plants for management of strawberry anthracnose crown rot. Plant Dis.;76:260–4 (1992) [CrossRef] [Google Scholar]
- Manganaris GA, Economou AS, Bouburakas IN, Katis NI. Elimination of PPV and PNRSV through thermotherapy and meristem-tip culture in nectarine. Plant Cell Rep. (2003), 2:195–200. [CrossRef] [PubMed] [Google Scholar]
- Ganapathi TR, Suprasanna P, Bapat VA & Rao PS Propagation of banana through encapsulated shoot tips. Plant Cell Rep. 11: 571–575, (1992) [CrossRef] [PubMed] [Google Scholar]
- Baghdady, G. A. In Vitro Propagation of Blackberries (Rubus sp) Prime-Ark 45 Cultivar. Annals of Agricultural Science, Moshtohor, 59(2), 287-294 (2021). [CrossRef] [Google Scholar]
- Ahmed, M. E. S. A. E. N., Elaziem, A., & Abd Elaziem, T. M. In vitro regeneration and improving kaempferol accumulation in blackberry (Rubus fruticosus L.) callus and suspension cultures. Egyptian Journal of Chemistry, 65(12), 369-383 (2022). [Google Scholar]
- Topçu, H. Optimal Propagation and Rooting Mediums in Rubus spp. by in Vitro Micropropagation. Uluslararası tarım araştırmalarında yenilikçi yaklaşımlar dergisi (2022). [Google Scholar]
- Samaan, M. S. F., & Nasser, M. A. E. Micropropagation of Blackberry (Rubus fruticosus.) cv. Karaka Black. Egyptian Journal of Horticulture, 49(2), 187-198 (2022). [CrossRef] [Google Scholar]
- Aly, A. A., El-Desouky, W., & El-Leel, O. F. A. Micropropagation, phytochemical content and antioxidant activity of gamma-irradiated blackberry (Rubus fruticosus L.) plantlets. In Vitro Cellular & Developmental Biology-Plant, 58(3), 457-469 (2022). [CrossRef] [Google Scholar]
- Da Silva, I. A. O., & Biasi, L. ADouble-phase culture medium and plant growth regulators in the micropropagation of blackberries. Comunicata Scientiae, 13, 1-7, (2022). [Google Scholar]
- Clapa, D., Hârța, M., Szabo, K., Teleky, B. E., & Pamfil, D. The Use of Wheat Starch as Gelling Agent for In Vitro Proliferation of Blackberry (Rubus fruticosus L.) Cultivars and the Evaluation of Genetic Fidelity after Repeated Subcultures. Horticulturae, 9(8), 902 (2023) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.