Open Access
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
Article Number 01109
Number of page(s) 8
Published online 12 January 2024
  • S. K. Samal et al., “3D-Printed Satellite Brackets: Materials, Manufacturing and Applications,” Crystals (Basel), vol. 12, no. 8, Aug. 2022, doi: 10.3390/CRYST12081148. [Google Scholar]
  • K. Zheng Yang et al., “Application of coolants during tool-based machining – A review,” Ain Shams Engineering Journal, 2022, doi: 10.1016/J.ASEJ.2022.101830. [Google Scholar]
  • S. Subramaniam et al., “Artificial Intelligence Technologies for Forecasting Air Pollution and Human Health: A Narrative Review,” Sustainability (Switzerland), vol. 14, no. 16, Aug. 2022, doi: 10.3390/SU14169951. [Google Scholar]
  • V. S. Rana et al., “Assortment of latent heat storage materials using multi criterion decision making techniques in Scheffler solar reflector,” International Journal on Interactive Design and Manufacturing, 2023, doi: 10.1007/S12008-023-01456-9. [Google Scholar]
  • S. Bali et al., “A framework to assess the smartphone buying behaviour using DEMATEL method in the Indian context,” Ain Shams Engineering Journal, 2023, doi: 10.1016/J.ASEJ.2023.102129. [Google Scholar]
  • R. C. Navarro et al., “Indoor occupancy estimation for smart utilities: A novel approach based on depth sensors,” Build Environ, vol. 222, Aug. 2022, doi: 10.1016/j.buildenv.2022.109406. [CrossRef] [Google Scholar]
  • P. Dasler, S. Malik, and M. L. Mauriello, “‘Just Follow the Lights’: A Ubiquitous Framework for Low-Cost, Mixed Fidelity Navigation in Indoor Built Environments,” International Journal of Human Computer Studies, vol. 155, Nov. 2021, doi: 10.1016/j.ijhcs.2021.102692. [CrossRef] [Google Scholar]
  • Y. Sartayeva and H. C. B. Chan, “A survey on indoor positioning security and privacy,” Comput Secur, vol. 131, Aug. 2023, doi: 10.1016/j.cose.2023.103293. [CrossRef] [Google Scholar]
  • L. Xia, J. Lu, Y. Lu, H. Zhang, Y. Fan, and Z. Zhang, “Augmented reality and indoor positioning based mobile production monitoring system to support workers with human-in-the-loop,” Robot Comput Integr Manuf, vol. 86, Apr. 2024, doi: 10.1016/j.rcim.2023.102664. [Google Scholar]
  • B. Jang, H. Kim, and J. wook Kim, “Survey of Landmark-based Indoor Positioning Technologies,” Information Fusion, vol. 89, pp. 166–188, Jan. 2023, doi: 10.1016/j.inffus.2022.08.013. [CrossRef] [Google Scholar]
  • J. Barbosa, J. Tavares, I. Cardoso, B. Alves, and B. Martini, “TrailCare: An indoor and outdoor Context-aware system to assist wheelchair users,” International Journal of Human Computer Studies, vol. 116, pp. 1–14, Aug. 2018, doi: 10.1016/j.ijhcs.2018.04.001. [CrossRef] [Google Scholar]
  • M. Z. ul Haq et al., “Eco-Friendly Building Material Innovation: Geopolymer Bricks from Repurposed Plastic Waste,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01201. [Google Scholar]
  • M. Z. ul Haq et al., “Circular Economy Enabler: Enhancing High-Performance Bricks through Geopolymerization of Plastic Waste,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01202. [Google Scholar]
  • M. Z. ul Haq et al., “Waste Upcycling in Construction: Geopolymer Bricks at the Vanguard of Polymer Waste Renaissance,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01205. [Google Scholar]
  • K. Kumar et al., “From Homogeneity to Heterogeneity: Designing Functionally Graded Materials for Advanced Engineering Applications,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01198. [Google Scholar]
  • M. Z. ul Haq, H. Sood, and R. Kumar, “SEM-Assisted Mechanistic Study: pH-Driven Compressive Strength and Setting Time Behavior in Geopolymer Concrete,” 2023. [Google Scholar]
  • V. S. Rana et al., “Correction: Assortment of latent heat storage materials using multi criterion decision making techniques in Scheffler solar reflector,” International Journal on Interactive Design and Manufacturing (IJIDeM), p. 1, 2023. [Google Scholar]
  • H. Rizk, M. Abbas, and M. Youssef, “Device-independent cellular-based indoor location tracking using deep learning,” Pervasive Mob Comput, vol. 75, Aug. 2021, doi: 10.1016/j.pmcj.2021.101420. [CrossRef] [Google Scholar]
  • J. Kim, S. Kim, S. Bae, M. Kim, Y. Cho, and K. I. Lee, “Indoor environment monitoring system tested in a living lab,” Build Environ, vol. 214, Apr. 2022, doi: 10.1016/j.buildenv.2022.108879. [Google Scholar]
  • R. P. P. M. Souza, L. J. A. dos Santos, G. T. P. Coimbra, F. A. Silva, and T. R. M. B. Silva, “A Big Data-Driven Hybrid Solution to the Indoor-Outdoor Detection Problem,” Big Data Research, vol. 24, May 2021, doi: 10.1016/j.bdr.2021.100194. [Google Scholar]
  • M. Tukur, G. Pintore, E. Gobbetti, J. Schneider, and M. Agus, “SPIDER: A framework for processing, editing and presenting immersive high-resolution spherical indoor scenes,” Graph Models, vol. 128, Jul. 2023, doi: 10.1016/j.gmod.2023.101182. [CrossRef] [Google Scholar]
  • A. Alitaleshi, H. Jazayeriy, and J. Kazemitabar, “EA-CNN: A smart indoor 3D positioning scheme based on Wi- Fi fingerprinting and deep learning,” Eng Appl Artif Intell, vol. 117, Jan. 2023, doi: 10.1016/j.engappai.2022.105509. [CrossRef] [Google Scholar]
  • Q. Sun, L. He, F. Meng, H. Tong, N. Xiao, and Y. Zheng, “Wireless communication indoor positioning method in 5G sub-station using deep neural network and location fingerprint algorithm,” Optik (Stuttg), vol. 271, Dec. 2022, doi: 10.1016/j.ijleo.2022.170159. [Google Scholar]
  • “Location-Based Services for Indoor Environments: A User Experience Test - Search |” Accessed: Nov. 07, 2023. [Online]. Available: [Google Scholar]
  • H. Cynthia Hou, D. Zhang, and J. H. K. Lai, “Qualitative and quantitative investigation into the indoor built environment of modular student housing: A multiple-room case study,” Energy Build, vol. 280, Feb. 2023, doi: 10.1016/j.enbuild.2022.112734. [CrossRef] [Google Scholar]
  • G. Pau, F. Arena, M. Collotta, and X. Kong, “A practical approach based on Bluetooth Low Energy and Neural Networks for indoor localization and targeted devices’ identification by smartphones,” Entertain Comput, vol. 43, Aug. 2022, doi: 10.1016/j.entcom.2022.100512. [PubMed] [Google Scholar]
  • B. Xia and Z. Li, “Optimization of residential urban-block morphology based on its synthetic effects on indoor and outdoor natural lighting environments,” Sustain Cities Soc, vol. 97, Oct. 2023, doi: 10.1016/j.scs.2023.104698. [Google Scholar]
  • Á. Carro-Lagoa, V. Barral, M. González-López, C. J. Escudero, and L. Castedo, “Multicamera edge-computing system for persons indoor location and tracking,” Internet of Things, vol. 24, p. 100940, Dec. 2023, doi: 10.1016/j.iot.2023.100940. [CrossRef] [Google Scholar]
  • A. G. Abdellatif, A. A. Salama, H. S. Zied, A. A. Elmahallawy, and M. A. Shawky, “An improved indoor positioning based on crowd-sensing data fusion and particle filter,” Physical Communication, p. 102225, Nov. 2023, doi: 10.1016/J.PHYCOM.2023.102225. [Google Scholar]
  • A. Taneja, S. Rani, J. Breñosa, A. Tolba, and S. Kadry, “An improved WiFi sensing based indoor navigation with reconfigurable intelligent surfaces for 6G enabled IoT network and AI explainable use case,” Future Generation Computer Systems, vol. 149, pp. 294–303, Dec. 2023, doi: 10.1016/j.future.2023.07.016. [CrossRef] [Google Scholar]
  • F. Furfari et al., “Discovering location based services: A unified approach for heterogeneous indoor localization systems,” Internet of Things (Netherlands), vol. 13, Mar. 2021, doi: 10.1016/j.iot.2020.100334. [Google Scholar]
  • S. H. Alsamhi, A. V. Shvetsov, A. Hawbani, S. V. Shvetsova, S. Kumar, and L. Zhao, “Survey on Federated Learning enabling indoor navigation for industry 4.0 in B5G,” Future Generation Computer Systems, vol. 148, pp. 250–265, Nov. 2023, doi: 10.1016/j.future.2023.06.001. [CrossRef] [Google Scholar]
  • A. Alferidi, M. Alsolami, B. Lami, and S. Ben Slama, “Design and implementation of an indoor environment management system using a deep reinforcement learning approach,” Ain Shams Engineering Journal, vol. 14, no. 11, Nov. 2023, doi: 10.1016/j.asej.2023.102534. [CrossRef] [Google Scholar]
  • Z. Turgut and A. G. Kakisim, “An explainable hybrid deep learning architecture for WiFi-based indoor localization in Internet of Things environment,” Future Generation Computer Systems, vol. 151, pp. 196–213, Feb. 2024, doi: 10.1016/j.future.2023.10.003. [CrossRef] [Google Scholar]
  • M. Koyaz and A. Ünlü, “Human-centred performance criteria for adaptive façade design: Based on the results of a user experience survey,” Build Environ, vol. 222, Aug. 2022, doi: 10.1016/j.buildenv.2022.109386. [CrossRef] [Google Scholar]
  • E. Diz-Mellado, V. P. López-Cabeza, C. Rivera-Gómez, and C. Galán-Marín, “Performance evaluation and users’ perception of courtyards role in indoor areas of mediterranean social housing,” J Environ Manage, vol. 345, Nov. 2023, doi: 10.1016/j.jenvman.2023.118788. [CrossRef] [PubMed] [Google Scholar]
  • M. O. Wong, H. Zhou, H. Ying, and S. Lee, “A voice-driven IMU-enabled BIM-based multi-user system for indoor navigation in fire emergencies,” Autom Constr, vol. 135, Mar. 2022, doi: 10.1016/j.autcon.2022.104137. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.