Open Access
Issue
BIO Web Conf.
Volume 89, 2024
The 4th Sustainability and Resilience of Coastal Management (SRCM 2023)
Article Number 01007
Number of page(s) 14
Section Environmental Monitoring and Sustainability
DOI https://doi.org/10.1051/bioconf/20248901007
Published online 23 January 2024
  • P. Griffiths, S. Van Der Linden, T. Kuemmerle, and P. Hostert, “Erratum: A pixel-based landsat compositing algorithm for large area land cover mapping (IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing),” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 6, no. 5, pp. 2088–2101, 2013, doi: 10.1109/JSTARS.2012.2228167. [CrossRef] [Google Scholar]
  • V. Eisavi, S. Homayouni, A. M. Yazdi, and A. Alimohammadi, “Land cover mapping based on random forest classification of multitemporal spectral and thermal images,” Environ. Monit. Assess., vol. 187, no. 5, pp. 1–14, 2015, doi: 10.1007/s10661-015-4489-3. [CrossRef] [PubMed] [Google Scholar]
  • R. Rashdi, J. Martínez-Sánchez, P. Arias, and Z. Qiu, “Scanning Technologies to Building Information Modelling: A Review,” Infrastructures, vol. 7, no. 4, 2022, doi: 10.3390/infrastructures7040049. [CrossRef] [Google Scholar]
  • M. A. Wulder et al., “Operational mapping of the land cover of the forested area of Canada with Landsat data: EOSD land cover program,” For. Chron., vol. 79, no. 6, pp. 1075–1083, 2003, doi: 10.5558/tfc791075-6. [CrossRef] [Google Scholar]
  • B. Pradhan, M. N. Jebur, H. Z. M. Shafri, and M. S. Tehrany, “Data fusion technique using wavelet transform and taguchi methods for automatic landslide detection from airborne laser scanning data and quickbird satellite imagery,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3, pp. 1610–1622, 2016, doi: 10.1109/TGRS.2015.2484325. [CrossRef] [Google Scholar]
  • C. Ginzler and M. L. Hobi, “Countrywide stereo-image matching for updating digital surface models in the framework of the swiss national forest inventory,” Remote Sens., vol. 7, no. 4, pp. 4343–4370, 2015, doi: 10.3390/rs70404343. [CrossRef] [Google Scholar]
  • A. Hamedianfar and M. Barakat A. Gibril, “Large-scale urban mapping using integrated geographic object-based image analysis and artificial bee colony optimization from worldview-3 data,” Int. J. Remote Sens., vol. 40, no. 17, pp. 6796–6821, 2019, doi: 10.1080/01431161.2019.1594435. [CrossRef] [Google Scholar]
  • K. B. Pierce, “Accuracy optimization for high resolution object-based change detection: An example mapping regional urbanization with 1-m aerial imagery,” Remote Sens., vol. 7, no. 10, pp. 12654–12679, 2015, doi: 10.3390/rs71012654. [CrossRef] [Google Scholar]
  • E. Russell, J. C. Padró, P. Montero, C. Domingo-Marimon, and V. Carabassa, “Relief Modeling in the Restoration of Extractive Activities Using Drone Imagery,” Sensors, vol. 23, no. 4, pp. 1–15, 2023, doi: 10.3390/s23042097. [CrossRef] [PubMed] [Google Scholar]
  • L. F. F. G. Assis et al., “TerraBrasilis: A Spatial Data Analytics Infrastructure for Large-Scale Thematic Mapping,” ISPRS Int. J. Geo-Information, vol. 8, no. 11, p. 513, 2019, doi: 10.3390/ijgi8110513. [CrossRef] [Google Scholar]
  • M. Pełka and J. Będkowski, “Calibration of planar reflectors reshaping LiDAR’s field of view,” Sensors, vol. 21, no. 19, pp. 1–16, 2021, doi: 10.3390/s21196501. [Google Scholar]
  • J. Będkowski and M. Pełka, “Affordable Robotic Mobile Mapping System Based on Lidar with Additional Rotating Planar Reflector,” Sensors, vol. 23, no. 3, 2023, doi: 10.3390/s23031551. [Google Scholar]
  • H. Wang, Y. Peng, L. Liu, and J. Liang, “Study on Target Detection and Tracking Method of UAV Based on LiDAR,” 2021 Glob. Reliab. Progn. Heal. Manag. PHM-Nanjing 2021, pp. 5–10, 2021, doi: 10.1109/PHM-Nanjing52125.2021.9612936. [Google Scholar]
  • G. Mahajan, “Applications of Drone Technology in Construction Industry: A Study 2012-2021,” Int. J. Eng. Adv. Technol., vol. 11, no. 1, pp. 224–239, 2021, doi: 10.35940/ijeat.a3165.1011121. [CrossRef] [Google Scholar]
  • W. Tan et al., “Semantic Segmentation of Uav Lidar Point Clouds of a Stack Interchange With Deep Neural Networks,” Int. Geosci. Remote Sens. Symp., pp. 582–585, 2021, doi: 10.1109/IGARSS47720.2021.9554610. [Google Scholar]
  • X. Wang, “Drone-based area scanning of vegetation fluorescence height profiles using a miniaturized hyperspectral lidar system,” Appl. Phys. B, vol. 124, no. 11, pp. 1–5, 2018, doi: 10.1007/s00340-018-7078-7. [Google Scholar]
  • W. Wei, B. Shirinzadeh, R. Nowell, and M. Ghafarian, “Enhancing Solid State LiDAR Mapping with a 2D Spinning LiDAR in Urban Scenario SLAM on Ground Vehicles,” 2021. [Google Scholar]
  • Z. Wang, X. Wang, B. Fang, K. Yu, and J. Ma, “Vehicle detection based on point cloud intensity and distance clustering,” J. Phys. Conf. Ser., vol. 1748, no. 4, pp. 0–6, 2021, doi: 10.1088/1742-6596/1748/4/042053. [Google Scholar]
  • LIVOX, “Livox Mid-40 Quick Start Guide,” 2019, [Online]. Available: https://www.livoxtech.com/3296f540ecf5458a8829e01cf429798e/downloads/20190530/Livox Mid-40 Quick Start Guide multi v1.4.pdf. [Google Scholar]
  • A. Ortiz Arteaga, D. Scott, and J. Boehm, “Initial investigation of a low-cost automotive LiDar system,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., vol. 42, no. 2/W17, pp. 233–240, 2019, doi: 10.5194/isprs-archives-XLII-2-W17-233-2019. [CrossRef] [Google Scholar]
  • C. L. Glennie and P. J. Hartzell, “Accuracy assessment and calibration of low-cost autonomous LiDAR sensors,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., vol. 43, no. B1, pp. 371–376, 2020, doi: 10.5194/isprs-archives-XLIII-B1-2020-371-2020. [CrossRef] [Google Scholar]
  • D. Zhang, X. Wang, Z. Zheng, and X. Liu, “Unsupervised Domain Adaptive 3-D Detection With Data Adaption From LiDAR Point Cloud,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–14, 2022, doi: 10.1109/TGRS.2022.3226570. [CrossRef] [Google Scholar]
  • A. Al-Rawabdeh, F. He, and A. Habib, “Automated feature-based down-sampling approaches for fine registration of irregular point clouds,” Remote Sens., vol. 12, no. 7, pp. 1–25, 2020, doi: 10.3390/rs12071224. [Google Scholar]
  • M. Amado, F. Lopes, A. Dias, and A. Martins, “LiDAR-based Power Assets Extraction based on Point Cloud Data,” 2021 IEEE Int. Conf. Auton. Robot Syst. Compet. ICARSC 2021, pp. 221–227, 2021, doi: 10.1109/ICARSC52212.2021.9429772. [Google Scholar]
  • Z. Ding, Y. Sun, S. Xu, Y. Pan, Y. Peng, and Z. Mao, “Recent Advances and Perspectives in Deep Learning Techniques for 3D Point Cloud Data Processing,” Robotics, vol. 12, no. 4, pp. 1–23, 2023, doi: 10.3390/robotics12040100. [Google Scholar]
  • Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun, “Deep Learning for 3D Point Clouds: A Survey,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 12, pp. 4338–4364, 2021, doi: 10.1109/TPAMI.2020.3005434. [CrossRef] [PubMed] [Google Scholar]
  • F. Guiotte, S. Lefèvre, and T. Corpetti, “Attribute filtering of urban point clouds using max-tree on voxel data,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11564 LNCS, no. January, pp. 391–402, 2019, doi: 10.1007/978-3-030-20867-7_30. [Google Scholar]
  • R. G. Brazeal, B. E. Wilkinson, and H. H. Hochmair, “A rigorous observation model for the risley prism-based livox mid-40 lidar sensor,” Sensors, vol. 21, no. 14, 2021, doi: 10.3390/s21144722. [Google Scholar]
  • B. Liu, S. Chen, H. Huang, and X. Tian, “Tree Species Classification of Backpack Laser Scanning Data Using the PointNet++ Point Cloud Deep Learning Method,” Remote Sens., vol. 14, no. 15, 2022, doi: 10.3390/rs14153809. [Google Scholar]
  • G. A. J. Kartini and I. Gumilar, “Utilization of iPad Pro LiDAR and Low-Cost GNSS Ublox F9R for Data Collection of Road Assets in the Form of 3D Models Utilization of iPad Pro LiDAR and Low-Cost GNSS Ublox F9R for Data Collection of Road Assets in the Form of 3D Models,” 2021, doi: 10.1088/1755-1315/1127/1/012013. [Google Scholar]
  • M. Nur, T. As, R. Mardiyanto, and R. Er, “Geodesy and Geodynamics Performance of GPS and IMU sensor fusion using unscented Kalman fi lter for precise i-Boat navigation in in fi nite wide waters,” vol. 14, pp. 265–274, 2023, doi: 10.1016/j.geog.2022.11.005. [Google Scholar]
  • E. S. Technology, C. Service, and C. Author, “Loosely Coupled GNSS and IMU Integration for Accurate i-Boat Horizontal Navigation,” vol. 18, no. 3, pp. 111–122, 2022. [Google Scholar]
  • C. Kelly, B. Wilkinson, A. Abd-Elrahman, O. Cordero, and H. A. Lassiter, “Accuracy Assessment of Low-Cost Lidar Scanners: An Analysis of the Velodyne HDL–32E and Livox Mid–40’s Temporal Stability,” Remote Sens., vol. 14, no. 17, 2022, doi: 10.3390/rs14174220. [Google Scholar]
  • D. March, A. Livox, L. Livox, R. Revised, and L. L. Livox, “Explanatory Notes on Livox Point Cloud Sequences Livox 点云序列说明,” pp. 1–2, 2020. [Google Scholar]
  • I. Elkhrachy, “Accuracy Assessment of Low-Cost Unmanned Aerial Vehicle (UAV) Photogrammetry,” Alexandria Eng. J., vol. 60, no. 6, pp. 5579–5590, 2021, doi: 10.1016/j.aej.2021.04.011. [CrossRef] [Google Scholar]
  • P. Wang, T. Gu, B. Sun, D. Huang, and K. Sun, “Research on 3D Point Cloud Data Preprocessing and Clustering Algorithm of Obstacles for Intelligent Vehicle,” World Electr. Veh. J., vol. 13, no. 7, 2022, doi: 10.3390/wevj13070130. [Google Scholar]
  • W. Błaszczak-Bąk, J. Janicka, C. Suchocki, A. Masiero, and A. Sobieraj-żłobińska, “Down-sampling of large lidar dataset in the context of off-road objects extraction,” Geosci., vol. 10, no. 6, 2020, doi: 10.3390/geosciences10060219. [Google Scholar]
  • M. Awrangjeb and C. S. Fraser, “Automatic segmentation of raw LIDAR data for extraction of building roofs,” Remote Sens., vol. 6, no. 5, pp. 3716–3751, 2014, doi: 10.3390/rs6053716. [CrossRef] [Google Scholar]
  • G. D’Amico, A. Amodeo, I. Mattis, V. Freudenthaler, and G. Pappalardo, “EARLINET Single Calculus Chain-technical andndash; Part 1: Pre-processing of raw lidar data,” Atmos. Meas. Tech., vol. 9, no. 2, pp. 491–507, 2016, doi: 10.5194/amt-9-491-2016. [CrossRef] [Google Scholar]
  • N. A. Correa-Muños and L. A. Cerón-Calderón, “Precision and accuracy of the static gnss method for surveying networks used in civil engineering,” Ing. e Investig., vol. 38, no. 1, pp. 52–59, 2018, doi: 10.15446/ing.investig.v38n1.64543. [Google Scholar]
  • H. C. Ren et al., “Study on analysis from sources of error for Airborne LIDAR,” IOP Conf. Ser. Earth Environ. Sci., vol. 46, no. 1, 2016, doi: 10.1088/1755-1315/46/1/012030. [Google Scholar]
  • H. Qin, H. Guan, Y. Yu, and L. Zhong, “A voxel-based filtering algorithm for mobile LiDAR data,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., vol. 42, no. 3, pp. 1433–1438, 2018, doi: 10.5194/isprs-archives-XLII-3-1433-2018. [CrossRef] [Google Scholar]
  • S. Morsy and A. Shaker, “Evaluation of LiDAR-Derived Features Relevance and Training Data Minimization for 3D Point Cloud Classification,” Remote Sens., vol. 14, no. 23, pp. 1–15, 2022, doi: 10.3390/rs14235934. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.