Open Access
Issue
BIO Web Conf.
Volume 109, 2024
Conference on Water, Agriculture, Environment and Energy (WA2EN2023)
Article Number 01019
Number of page(s) 11
DOI https://doi.org/10.1051/bioconf/202410901019
Published online 20 May 2024
  • I. Conti, R. Morigi, A. Locatelli, M. Rambaldi, G. Bua, G. Gallinella, A. Leoni, Synthesis of 3-(Imidazo [2, 1-b] thiazol-6-yl)-2H-chromen-2-one Derivatives and Study of Their Antiviral Activity against Parvovirus B19, Molecules, 24 (2019) 1037. [CrossRef] [PubMed] [Google Scholar]
  • S. Dadou, A. Altay, M. Koudad, B. Türkmenoğlu, E. Yeniceri, S. Çağlar, M. Allali, A. Oussaid, N. Benchat, K. Karrouchi, Design, synthesis, anticancer evaluation and molecular docking studies of new imidazo [2, 1-b] thiazole-based chalcones, Medicinal Chemistry Research, 31 (2022) 1369–1383. [CrossRef] [Google Scholar]
  • S. Dadou, A. Altay, C. Baydere, E.H. Anouar, B. Türkmenoğlu, M. Koudad, N. Dege, A. Oussaid, N. Benchat, K. Karrouchi, Chalcone-based imidazo [2, 1-b] thiazole derivatives: synthesis, crystal structure, potent anticancer activity, and computational studies, Journal of Biomolecular Structure and Dynamics, DOI (2023) 1–16. [CrossRef] [Google Scholar]
  • N.S. Shetty, I.A.M. Khazi, C.-J. Ahn, Synthesis, anthelmintic and antiinflammatory activities of some novel imidazothiazole sulfides and sulfones, Bulletin of the Korean Chemical Society, 31 (2010) 2337–2340. [CrossRef] [Google Scholar]
  • B. Singh, A. Maheshwari, G. Dak, K. Sharma, G. Talesara, Studies of antimicrobial activities of some 4-thiazolidinone fused pyrimidines,[1, 5]-benzodiazepines and their oxygen substituted hydroxylamine derivatives, Indian journal of pharmaceutical sciences, 72 (2010) 607. [CrossRef] [PubMed] [Google Scholar]
  • A.H. Raeymaekers, F.T. Allewijn, J. Vandenberk, P.J. Demoen, T.T. Van Offenwert, P.A. Janssen, Novel Broad-Spectrum Anthelmintics. Tetramisole1 and Related Derivatives of 6-Arylimidazo [2, 1-b] thiazole, Journal of Medicinal Chemistry, 9 (1966) 545–551. [CrossRef] [PubMed] [Google Scholar]
  • S.U.F. Rizvi, H.L. Siddiqui, M. Johns, M. Detorio, R.F. Schinazi, Anti-HIV-1 and cytotoxicity studies of piperidyl-thienyl chalcones and their 2-pyrazoline derivatives, Medicinal Chemistry Research, 21 (2012) 3741–3749. [CrossRef] [Google Scholar]
  • H. Sharma, S. Patil, T.W. Sanchez, N. Neamati, R.F. Schinazi, J.K. Buolamwini, Synthesis, biological evaluation and 3D-QSAR studies of 3-keto salicylic acid chalcones and related amides as novel HIV-1 integrase inhibitors, Bioorganic & medicinal chemistry, 19 (2011) 2030–2045. [CrossRef] [PubMed] [Google Scholar]
  • S. Cheenpracha, C. Karalai, C. Ponglimanont, S. Subhadhirasakul, S. Tewtrakul, Anti-HIV-1 protease activity of compounds from Boesenbergia pandurata, Bioorganic & medicinal chemistry, 14 (2006) 1710–1714. [CrossRef] [PubMed] [Google Scholar]
  • R.A. Reddy, V.K. Reddy, B. Mahesh, B. Ram, B. Balram, SYNTHESIS OF 4ETHYNYL CHALCONES AS POTENT ANTIBACTERIAL AGENTS, DOI (2015). [Google Scholar]
  • D.K. Mahapatra, S.K. Bharti, V. Asati, Chalcone scaffolds as anti-infective agents: Structural and molecular target perspectives, European journal of medicinal chemistry, 101 (2015) 496–524. [CrossRef] [PubMed] [Google Scholar]
  • L.D. Chiaradia, P.G.A. Martins, M.N.S. Cordeiro, R.V.C. Guido, G. Ecco, A.D. Andricopulo, R.A. Yunes, J. Vernal, R.J. Nunes, H.n. Terenzi, Synthesis, biological evaluation, and molecular modeling of chalcone derivatives as potent inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatases (PtpA and PtpB), Journal of medicinal chemistry, 55 (2011) 390–402. [Google Scholar]
  • K.V. Sashidhara, K.B. Rao, V. Kushwaha, R.K. Modukuri, R. Verma, P. Murthy, Synthesis and antifilarial activity of chalcone–thiazole derivatives against a human lymphatic filarial parasite, Brugia malayi, European journal of medicinal chemistry, 81 (2014) 473–480. [CrossRef] [PubMed] [Google Scholar]
  • S.K. Awasthi, N. Mishra, S.K. Dixit, A. Singh, M. Yadav, S.S. Yadav, S. Rathaur, Antifilarial activity of 1, 3-diarylpropen-1-one: effect on glutathione-S-transferase, a phase II detoxification enzyme, The American journal of tropical medicine and hygiene, 80 (2009) 764–768. [CrossRef] [PubMed] [Google Scholar]
  • V. Tomar, G. Bhattacharjee, S. Rajakumar, K. Srivastava, S. Puri, Synthesis of new chalcone derivatives containing acridinyl moiety with potential antimalarial activity, European journal of medicinal chemistry, 45 (2010) 745–751. [CrossRef] [PubMed] [Google Scholar]
  • S. Srivastava, S. Joshi, A.R. Singh, S. Yadav, A. Saxena, V. Ram, S. Chandra, J. Saxena, Oxygenated chalcones and bischalcones as a new class of inhibitors of DNA topoisomerase II of malarial parasites, Medicinal Chemistry Research, 17 (2008) 234–244. [CrossRef] [Google Scholar]
  • M. Chen, S.B. Christensen, J. Blom, E. Lemmich, L. Nadelmann, K. Fich, T.G. Theander, A. Kharazmi, Licochalcone A, a novel antiparasitic agent with potent activity against human pathogenic protozoan species of Leishmania, Antimicrobial agents and chemotherapy, 37 (1993) 2550–2556. [CrossRef] [PubMed] [Google Scholar]
  • M.I. Abdullah, A. Mahmood, M. Madni, S. Masood, M. Kashif, Synthesis, characterization, theoretical, anti-bacterial and molecular docking studies of quinoline based chalcones as a DNA gyrase inhibitor, Bioorganic chemistry, 54 (2014) 31–37. [CrossRef] [PubMed] [Google Scholar]
  • P.M. Sivakumar, S. Ganesan, P. Veluchamy, M. Doble, Novel chalcones and 1, 3, 5‐triphenyl‐2‐pyrazoline derivatives as antibacterial agents, Chemical biology & drug design, 76 (2010) 407–411. [CrossRef] [PubMed] [Google Scholar]
  • K. Lahtchev, D. Batovska, P. St P, V. Ubiyvovk, A. Sibirny, Antifungal activity of chalcones: A mechanistic study using various yeast strains, European journal of medicinal chemistry, 43 (2008) 2220–2228. [CrossRef] [PubMed] [Google Scholar]
  • P. Boeck, P.C. Leal, R.A. Yunes, V.C. Filho, S. López, M. Sortino, A. Escalante, R.L. Furlán, S. Zacchino, Antifungal Activity and Studies on Mode of Action of Novel Xanthoxyline‐Derived Chalcones, Archiv der Pharmazie: An International Journal Pharmaceutical and Medicinal Chemistry, 338 (2005) 87–95. [CrossRef] [PubMed] [Google Scholar]
  • X.R. Ortolan, B.P. Fenner, T.J. Mezadri, D.R. Tames, R. Corrêa, F. de Campos Buzzi, Osteogenic potential of a chalcone in a critical-size defect in rat calvaria bone, Journal of Cranio-Maxillofacial Surgery, 42 (2014) 520–524. [CrossRef] [Google Scholar]
  • Y. Sato, J.-X. He, H. Nagai, T. Tani, T. Akao, Isoliquiritigenin, one of the antispasmodic principles of Glycyrrhiza ularensis roots, acts in the lower part of intestine, Biological and Pharmaceutical Bulletin, 30 (2007) 145–149. [CrossRef] [PubMed] [Google Scholar]
  • D.W. Kim, M.J. Curtis-Long, H.J. Yuk, Y. Wang, Y.H. Song, S.H. Jeong, K.H. Park, Quantitative analysis of phenolic metabolites from different parts of Angelica keiskei by HPLC–ESI MS/MS and their xanthine oxidase inhibition, Food chemistry, 153 (2014) 20–27. [CrossRef] [PubMed] [Google Scholar]
  • T. Yamamoto, M. Yoshimura, F. Yamaguchi, T. Kouchi, R. Tsuji, M. Saito, A. Obata, M. Kikuchi, Anti-allergic activity of naringenin chalcone from a tomato skin extract, Bioscience, biotechnology, and biochemistry, 68 (2004) 1706–1711. [CrossRef] [PubMed] [Google Scholar]
  • K.V. Sashidhara, S.R. Avula, V. Mishra, G.R. Palnati, L.R. Singh, N. Singh, Y.S. Chhonker, P. Swami, R. Bhatta, Identification of quinoline-chalcone hybrids as potential antiulcer agents, European journal of medicinal chemistry, 89 (2015) 638653. [CrossRef] [PubMed] [Google Scholar]
  • Y. Luo, R. Song, Y. Li, S. Zhang, Z.-J. Liu, J. Fu, H.-L. Zhu, Design, synthesis, and biological evaluation of chalcone oxime derivatives as potential immunosuppressive agents, Bioorganic & medicinal chemistry letters, 22 (2012) 3039–3043. [CrossRef] [PubMed] [Google Scholar]
  • A. Kamal, D. Dastagiri, M.J. Ramaiah, J.S. Reddy, E.V. Bharathi, C. Srinivas, S. Pushpavalli, D. Pal, M. Pal‐Bhadra, Synthesis of imidazothiazole–chalcone derivatives as anticancer and apoptosis inducing agents, ChemMedChem, 5 (2010) 1937–1947. [CrossRef] [PubMed] [Google Scholar]
  • M. Koudad, C. El Hamouti, A. Elaatiaoui, S. Dadou, A. Oussaid, F. Abrigach, G. Pilet, N. Benchat, M. Allali, Synthesis, crystal structure, antimicrobial activity and docking studies of new imidazothiazole derivatives, Journal of the Iranian Chemical Society, 17 (2020) 297–306. [CrossRef] [Google Scholar]
  • M. Koudad, C. El Hamouti, A. Elaatiaoui, S. Dadou, A. Oussaid, F. Abrigach, G. Pilet, N. Benchat, M. Allali, Synthesis, crystal structure, antimicrobial activity and docking studies of new imidazothiazole derivatives, Journal of the Iranian Chemical Society, 17 (2020) 297–306. [CrossRef] [Google Scholar]
  • J.L. Watts, Clinical, L.S. Institute, Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals: approved standard, National Committee for Clinical Laboratory Standards 2008. [Google Scholar]
  • S. Vilar, G. Cozza, S. Moro, Medicinal chemistry and the molecular operating environment (MOE): application of QSAR and molecular docking to drug discovery, Current topics in medicinal chemistry, 8 (2008) 1555–1572. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.