Open Access
Issue |
BIO Web Conf.
Volume 110, 2024
2nd International Conference on Recent Advances in Horticulture Research (ICRAHOR 2024)
|
|
---|---|---|
Article Number | 02005 | |
Number of page(s) | 15 | |
Section | Advances in Post-Harvest Management | |
DOI | https://doi.org/10.1051/bioconf/202411002005 | |
Published online | 24 May 2024 |
- A.M. Fotirić, Z.D. Dabić, U. Gašić, T. Tosti, M. Natić, & M. Meland. Analysis of Apple Fruit (Malus × domestica Borkh.) Quality Attributes Obtained from Organic and Integrated Production Systems. Sustainability; 14(9):5300 (2022). [Google Scholar]
- J. Hancock, J. Luby, S. Brown, & G. Lobos. Apple, Temperate Fruit Crop Breeding: Germplasm to Genomics, 1–38 (2008). [Google Scholar]
- R. Asha, K.V. Navneet, & G. Anubha. Brief study on Carica Papaya. International Journal of Current Trend in Pharmaceutical Research, Vol. 2(4): 541–550 (2014). [Google Scholar]
- R.L. Avrin, S. Satish, and A.R. Shabaraya. Pharmacological activities of Malus Domestica (2018). [Google Scholar]
- F.T. Almeida, S. Bernardo, E.F. Souza, S.L.D. Marin, & S. Grippa. Growth and yield of papaya under irrigation. Scientia Agricola, 60 (3), 419–424 (2003). [CrossRef] [Google Scholar]
- B. Koul, B. Pudhuvai, C. Sharma, A. Kumar, V. Sharma, D. Yadav, & J.O. Jin. Carica papaya L.: A Tropical Fruit with Benefits beyond the Tropics. Diversity; 14(8):683 (2022). [Google Scholar]
- K. Almora, J.A. Pino, M. Hernandez, C. Duarte, J. Gonzalez, & E. Roncal. Evaluation of volatiles from ripening papaya (Carica papaya L., var. Maradol roja). Food Chemistry, 86, 127–130 (2004). [CrossRef] [Google Scholar]
- M. Parle, & Gurditta. Basketful benefits of papaya. International Research Journal Pharmacy, 6–12 (2011). [Google Scholar]
- G. Aravind, B. Debjit, S. Duraivel, & G. Harish. Traditional and medicinal uses of Carica papaya. J Med Plants Study; Vol.1(1): 7–15 (2013). [Google Scholar]
- S. Hussain, B. Naseer, T. Qadri, T. Fatima, & T. Bhat. Apples (Pyrus Malus)—Morphology, Taxonomy, Composition and Health Benefits, Nutritional and Health Benefits, 17–34 (2021). [Google Scholar]
- M.S. Bains, H.S. Ramaswamy, & K.V. Lo. “Tray drying of apple puree”. Journal of Food Engineering, vol. 9, no. 3, 195–201 (1989). [CrossRef] [Google Scholar]
- J. Boyer, & R.H. Liu. Apple phytochemicals and their health benefits. Nutrition Journal, 3(1), 1–15 (2004). [CrossRef] [PubMed] [Google Scholar]
- K.R. Jahed, & P.M. Hirst. Fruit growth and development in apple: a molecular, genomics and epigenetics perspective. Front Plant Sci., 14:1122397 (2023). [CrossRef] [PubMed] [Google Scholar]
- V.M. Badillo, L.V.S. Carica, & S.T. Vasconcella. (Caricaceae) con la Rehabilitacion de este Ultimo. Ernstia 10: 74–79 (2002). [Google Scholar]
- G.D.O. Jurandi, & P.V. Angela. Papaya: Nutritional and pharmacological characterization, and quality loss due to physiological disorders. An overview. Food Research International, vol. 44, 1306–1313 (2010). [Google Scholar]
- V.R.R. Sanikommu, A.J. Sachin, C. Kavitha, & P. Kalal. Papaya (Carica papaya L.). Tropical Fruit Crops: Theory to Practical, 426–468 (2021). [Google Scholar]
- A.T.D.S. Jaime, R. Zinia, T.N. Duong, S. Dharini, G. Abed, T.S. ManoelJr., & F.T. Paula. Papaya (Carica papaya L.) Biology and Biotechnology. Tree and Forestry Science and Biotechnology (2007). [Google Scholar]
- Y.L. Chang. Common Nutrients and Nutraceutical Quality of Apples, Department of Food Science, Vol 20 (2012). [Google Scholar]
- B.E. Juniper, R. Watkins, & S.A. Harris. The origin of the apple. Acta Hortic. International Society for horticultural Science, Vol.484, 27–34 (1998). [Google Scholar]
- A. Cornille, P. Gladieux, M.J. Smulders, I. RoldánRuiz, F. Laurens, C. Le, B. Nersesyan, A. Clavel, J. Olonova, M. Feugey, L. Gabrielyan, I. Zhang, X.G. Tenaillon, M.I, & T. Giraud. New insight into the history of domesticated apple: secondary contribution of the European wild apple to the genome of cultivated varieties. PLoS Genet ;8(5) (2012). [Google Scholar]
- J. Janick. The origin of fruits, fruit growing, and fruit breeding. Department of Horticulture and Landscape Architecture, Vol.25, 255–320 (2005). [Google Scholar]
- D.A. Chaudhary, M.R. Chaudhary, & A.L. Judal. Apple: Varieties and its health benefits. Res. J. Animal Hus. & Dairy Sci., 5(1): 35–38 (2014). [Google Scholar]
- C.P. Mariana, & N.F. Juan. Domestication and Genetics of Papaya: A Review. Front. Ecol. Evol., Sec. Agroecology, Vol. 5 (2017). [Google Scholar]
- G. Fuentes, & J. Santamaría. Papaya (Carica papaya L.): Origin, Domestication, and Production. Genetics and Genomics of Papaya, 3–15 (2014). [CrossRef] [Google Scholar]
- G. Ćetković, B.J. Čanadanović, S. Djilas, S. Savatović, A. Mandić, & V. Tumbas. Assessment of polyphe-nolic content and in vitro antiradical characteristics of apple pomace. Food Chemistry, 109(2), 340–347 (2008). [CrossRef] [PubMed] [Google Scholar]
- P. Rajasekhar. Nutritional and Medicinal Value of Papaya (Carica papaya L.). World Journal of Pharmacy and Pharmaceutical Sciences (2017). [Google Scholar]
- B.V. Mehul, & K.S. Samir. Review on nutritional and medicinal values of “Carica papaya”. Journal of Pharmacognosy and Phytochemistry, vol. 5(4): 284–286 (2016). [Google Scholar]
- M.G. Cruz, R. Bastos, M. Pinto, J.M. Ferreira, J.F. Santos, D.F. Wessel, E. Coelho, & M.A. Coimbra. Waste mitigation: From an effluent of apple juice concentrate industry to a valuable ingredient for food and feed applications. Journal of Cleaner Production, 193, 652–660 (2018). [CrossRef] [Google Scholar]
- L.F. Santana, A.C. Inada, S. BLSD. Espirito, WFO. Filiú, A. Pott, F.M. Alves, RCA. Guimarães, K.C. Freitas, & P.A. Hiane. Nutraceutical Potential of Carica papaya in Metabolic Syndrome. Nutrients. Vol. 16;11(7):1608 (2019). [CrossRef] [PubMed] [Google Scholar]
- K. Shahroon, A. Ridhima, Pooja, Babli, Manju, V.S. Pahil, & I. Singh. A review paper on fruit nutrition and health benefits. The Pharma Innovation Journal; vol. 10(6): 119–123 (2021). [Google Scholar]
- M.R. Dinish. Genetic relationship among papaya (Carica papaya) and wild papaya (Vasconcellea species) using RAPD and ISSR markers. Indian Journal of Agricultural Sciences, 82 (4) (2010). [Google Scholar]
- S. Farhan, U.A. Muhammad, P. Imran, N. Rabia, B. Rizwana, A.K. Ammar, A.N. Muhammad, & S. Bilal. Nutritional and Phyto-Therapeutic Potential of Papaya (Carica Papaya Linn.): An Overview, International Journal of Food Properties, 17:7, 1637–1653 (2014). [CrossRef] [Google Scholar]
- U. Asma, K. Morozova, G. Ferrentino, & M. Scampicchio. Apples and Apple By-Products: Antioxidant Properties and Food Applications. Antioxidants. 12(7):1456 (2023). [CrossRef] [PubMed] [Google Scholar]
- D.A. Chaudhary, M.R. Chaudhary, & A.L. Judal. Apple: Varieties and its health benefits. Res. J. Animal Hus. & Dairy Sci., vol. 5(1): 35–38 (2014). [Google Scholar]
- A.B. Oyenihi, Z.A. Belay, A. Mditshwa, & O.J. Caleb. “An apple a day keeps the doctor away”: The potentials of apple bioactive constituents for chronic disease prevention. J Food Sci., Vol.87(6):2291–2309 (2022). [CrossRef] [PubMed] [Google Scholar]
- I. Ellouze, N. Akhavan, S. Singar, K. Dawkins, R. Nagpal, & B. Arjmandi. The Relationship of Fruits and Fruit-Products Consumption with Glucose Homeostasis and Diabetes: A Comprehensive Update on the Current Clinical Literature. Dietetics. Vol; 2(3):237–266 (2023). [CrossRef] [Google Scholar]
- S.M. Demarchi, R.M.T. Irigoyen, & S.A. Giner. “Vaccum drying of rose chip leathers: Modelling of coupled moisture content and temperature curve as function of time with simultaneous time varying ascorbic acid retention,”. Journal of Food Engineering, 233:9–16 (2018). [CrossRef] [Google Scholar]
- G. Subedi, M. Durga, & D.M. Gautam. Postharvest Management of Apple in Nepal “Reduce Postharvest Losses to Feed More People in Asia, 78-9937-0-6211-4 (2019). [Google Scholar]
- G. Birhanu. Review of the pre and post-harvest handling methods of apple fruit (Malus domestic). International Journal of Horticulture and Food Science, Vol; 3(1): 17–21 (2021). [CrossRef] [Google Scholar]
- C.V.T.D. Amarante, C.A. Steffens, A.L. Mafra, & J.A. Albuquerque. Yield and fruit quality of apple from conventional and organic production systems. Pesquisa agropecuáriabrasileira, 43(3), 333–340 (2008). [Google Scholar]
- L. Argenta, S. De Freitas, J. Mattheis, M. Vieira, C. Ogoshi, & L. Argenta. Characterization and Quantification of Postharvest Losses of Apple Fruit Stored under Commercial Conditions. Hort Science 56(5):1–9 (2021). [Google Scholar]
- M. Gonçalves, L. Argenta, & M. De Martin. Maturity and quality of apple fruit durinig the harvest period at apple industry. Revista Brasileira de Fruticultura. 39, 10.1590/0100 (2017). [Google Scholar]
- J. Springael, A. Paternoster, & J. Braet (2018). Reducing postharvest losses of apples: Optimal transport routing (while minimizing total costs). Computers and Electronics in Agriculture, vol. 146, 136–144 (2018). [CrossRef] [Google Scholar]
- A. Butkeviciute, J. Viskelis, M. Liaudanskas, P. Viskelis, & V. Janulis. Impact of Storage Controlled Atmosphere on the Apple Phenolic Acids, Flavonoids, and Anthocyanins and Antioxidant Activity In Vitro. Plants, 11(2):201 (2022). [CrossRef] [PubMed] [Google Scholar]
- D. Sugar. Management of postharvest diseases. In: M. Knee (ed.). Fruit quality and its biological basis. CRC Press, Boca Raton, FL, 225–252 (2022). [Google Scholar]
- C.A. Luiz, T.D.F. Sérgio, P.M. James, J.V. Marcelo, & O. Claudi. Characterization and Quantification of Postharvest Losses of Apple Fruit Stored under Commercial Conditions, vol. 56, 608–616 (2021). [Google Scholar]
- B. Hassan. Post-harvest management inadequacy and its impact on apple industry in Kashmir. International Journal of Applied Research and Studies, 20(7):246–250 (2021). [CrossRef] [Google Scholar]
- R.C. Nelson. Studies on production of ethylene in the ripening process in apple and banana. Food. Res. 4: 173–190 (1939). [CrossRef] [Google Scholar]
- K. Arundathi, V. Joshi, M. Sreedhar, & D. Vijaya. Effect of Different Wrapping Materials on Shelf Life and Quality of Papaya (Carica papaya L.) cv. Taiwan Stored at Ambient Temperature. Int. J. Curr. Microbial. App. Sci, 8(1), 2543–2552 (2019). [CrossRef] [Google Scholar]
- T.M. Gajanana, S. Mysore, A. Saxena, & V. Dakshinamoorthy. Post harvest handling, marketing and assessment of losses in papaya. Acta Horticulturae, 851(851):519–526 (2010). [CrossRef] [Google Scholar]
- O.F. Etefa, S.F. Forsido, & M.T. Kebede. “Postharvest Loss, Causes, and Handling Practices of Fruits and Vegetables in Ethiopia: Scoping Review”. Journal of Horticultural Research, vol.30, no.1, 1–10 (2022). [CrossRef] [Google Scholar]
- G. Padmanaban, K. Singaravelu, & ST. Annavi. Increasing the shelflife of papaya through vacuum packing. J Food Sci Technol. 51(1):163–7. doi: 10.1007/s13197-011-0468-z (2014). [CrossRef] [PubMed] [Google Scholar]
- V.R. Vinod, A. Ram, S. Shruti, P. Jai, K.M. Nirmal, M. Menaka, M. Shatakashi, & S. Gouthami. Food Bioengineering, Vol. 4 (2023). [Google Scholar]
- S.M.R. Azam, M. Zhang, C.L. Chung Lim Law, & A.S. Mujumdar. Effects of drying methods on quality attributes of peach (Prunus persica) leather, Drying Technology 37 (3), 341–351 (2019). [Google Scholar]
- L.M. Diamante, B. Xue, & J. Busch. Fruit Leathers: Method of Preparation and Effect of Different Conditions on Qualities. International Journal of Food Science (3):1–12 (2014). [CrossRef] [Google Scholar]
- M.V. Eberhardt, C.Y. Lee, & R.H. Liu. Antioxidant activity of fresh apples. Nature 405: 903–904 (2000). [CrossRef] [Google Scholar]
- X. Wang, C. Li, D. Liang, Y. Zou, P. Li, and F. Ma. Phenolic compounds and antioxidant activity in red-fleshed apples. Journal of Functional Foods, vol. 18, 1086–1094 (2015). [CrossRef] [Google Scholar]
- B. Harshini, & B. Manish. Fruit Leather: Preparation, packaging and its effect on sensorial and physico-chemical properties. Journal of Pharmacognosy and Phytochemistry, 9(6): 1699–1709 (2020). [CrossRef] [Google Scholar]
- Z. Hussein, O.J. Caleb, & U.L. Opara. Perforation-mediated modified atmosphere Packaging off reshand minimally processed produce–are view. Food Package Shelf, 6:7–20 (2015). [CrossRef] [Google Scholar]
- M.B. Vallée, M. Verheyde, S. Pomerleau, A. Doyen, & C. Couillard. Health Benefits of Apple Juice Consumption: A Review of Interventional Trials on Humans. Nutrients; 14(4):821 (2022). [CrossRef] [PubMed] [Google Scholar]
- Y. Inoue, L. Cormanes, K. Yoshimura, A. Sano, Y. Hori, R. Suzuki, & I. Kanamoto. Effect of Apple Consumption on Postprandial Blood Glucose Levels in Normal Glucose Tolerance People versus Those with Impaired Glucose Tolerance. Foods. 19;11(12):1803 (2022). [CrossRef] [PubMed] [Google Scholar]
- M.D. Jaochim, & A.A. Siri. Nutraceutical value of Carica papaya, Vol 13 (2021). [Google Scholar]
- B. Suvendu. Fruit leather: An overview (2023). [Google Scholar]
- M. Stefano, & S. Sara. Apple fruit quality. Overview on pre-harvest factor, Scientia Horticulturae, vol. 234, 409–430 (2018). [CrossRef] [Google Scholar]
- M. Mounika, & K. Uma Mashewari. Development and sensory evaluation of value-added mixed fruit leather. International Journal of Chemical Studies 7(4): 590–593 (2019). [Google Scholar]
- K.L. Krishna, M. Paridhavi, & A.P. Jagruti. Nutritional, medicinal and pharmacological properties of Papaya, Vol 7(4), 364–373 (2008). [Google Scholar]
- V. Kumar, J. Singh, S. Chandra, Kumar, R. Chaudhary, V.K. Singh, & P. Kumar. Post harvest technology of papaya fruits and its value-added products-a review. Progressive Agriculture, 19(2), 169–181 (2019). [Google Scholar]
- M.S. Kourany, K.I. Khalil, S.A.E. Mahmoud, & A.A.E.R.A.E.A. Mohdaly. Protein Fortified Mango and Guava Fruit Bars: Ingredients Optimization, Quality Evaluation and Storage Stability. International Journal of Current Microbiology and Applied Sciences, 6 (12): 28652877 (2017). [Google Scholar]
- A.P. Kumar, & C. Madhumathi. Effect of fortification on nutritional and sensory quality of papaya and guava fruit bar. International Journal of Agriculture Sciences, 9(28):4356–4362 (2017). [Google Scholar]
- L.M. Diamante, S.W. Li, Q.Q. Xu. and J. Busch. “Effects of apple juice concentrate, blackcurrant concentrate, and pectin levelson selected qualities of apple-blackcurrant fruit leather”. Foods, vol. 2, pp. 430–443 (2013). [CrossRef] [PubMed] [Google Scholar]
- D. Nowak, & P. P. Lewicki. “Infrared drying of apple slices”. Innovative Food Science and Emerging Technologies, vol.5, no.3, 353–360 (2004). [CrossRef] [Google Scholar]
- U. Litaf, S. Hassan khan, M, Usman Ali. Effect of different concentration of apple pulp and sugar on the shelf stability of prepared apple leather at ambient temperature. Food Sci., 24(3), 163–174 (2014). [Google Scholar]
- K. Lee, Y. Kim, D. Kim, H. Lee, C. Lee Major phenolics in apple and their contribution to the total antioxidant capacity. J Agric Food Chem, 51:6516–6520 (2003). [CrossRef] [PubMed] [Google Scholar]
- R. Kumar, R.T. Patil, and G. Mondal (2010). “Development and evaluation of blended papaya leather,”. Acta Horticulturae, vol. 851, 565–570. [CrossRef] [Google Scholar]
- J. Boyer, & R.H. Liu. Apple phytochemicals and their health benefits. Nutrition Journal, 3(1), 1–15 (2004). [CrossRef] [PubMed] [Google Scholar]
- O.M. Maribel, & A.G.A. Gustavo. Nutritional Composition and Antioxidant Properties of Fruits and Vegetables (2020). [Google Scholar]
- Y.B. Che Man, I. Jaswir, S. Yusof, J. Selamat, & H. Sugisawa. “Effect of different dryers and drying conditions on acceptability and physicochemical characteristics of durian leather,”. Journal of Food Processing and Preservation, vol.21, no.5, 425–441 (1997). [CrossRef] [Google Scholar]
- M.S.I. Martínez, M. Enteshari, & M.L. Lloyd. Lactitol: Production, properties, and applications. Trends in Food Science & Technology, 83: 181–191 (2019). [CrossRef] [Google Scholar]
- C. Phimpharian, A. Jangchud, K. Jangchud, N. Therdthai, W. Prinyawiwatkul, & H. K. No. “Physicochemical characteristics and sensory optimisation of pineapple leather snack as affected by glucose syrup and pectin concentrations,”. International Journal of Food Science and Technology, vol. 46, no.5, 972–981 (2011). [CrossRef] [Google Scholar]
- D.B.J. Madusanka, K.H. Sarananda, T. Mahendran, & G. Hariharan. Development of Mixed Fruit Leather Using Five Tropical Fruits, Proceedings in Medical, Allied Health, Basic and Applied Sciences, 9th International Research Conference (2016). [Google Scholar]
- R.B. Tiwari. Studies of blending of guava and papaya pulp for RTS beverage. Indian Food Packer, vol, 54, 68–72 (2000). [Google Scholar]
- A.K. Hemakar, M.C. Toma, & U.B. Singh. Studies on blending of guava pulp with mango pulp for dehydration (Mango-Guava sheet). Indian Food Pack, 45 (4): 45–50 (2000). [Google Scholar]
- D.M.C. Oliviera, R. Sichieri, & A.S. Moura. Weigh loss associated with a daily intake of three apples or three pears among overweight women. Nutrition 19: 253–256 (2003). [CrossRef] [PubMed] [Google Scholar]
- K. Prasad, & R.P. Joy. Postharvest losses of papaya and practice for its management, Food and Scientific report (2021). [Google Scholar]
- S.A. Hogan, V. Chaurin, B.T. O’Kennedy, & P.M. Kelly. Influence of dairy proteins on textural changes in high-protein bars. International Dairy Journal, 26(1): 58–65 (2012). [CrossRef] [Google Scholar]
- F.M. Yılmaz, K.S. Yu, H. Vardin, & K.M. Mehmet. The effects of drying conditions on moisture transfer and quality of pomegranate fruit leather (pestil). Journal of the Saudi Society of Agricultural Sciences, 16, 33–40 (2017). [CrossRef] [Google Scholar]
- S. Patel. Functional food relevance of whey protein: A review of recent findings and scopes ahead. Journal of Functional Foods, 19: 308–319 (2015). [CrossRef] [Google Scholar]
- M. Patel, & A.S. Kulkarni. Studies on development of protein fortified banana-cactus-pear mixed fruit bar. Chem. Sci.Rev.Lett., 6(23):1803–1809 (2017). [Google Scholar]
- P.A.I. Pawase, S.J. Veer, & U.D. Chavan. “Studies on effect of different packaging materials on shelf life of mix fruit bar,”. International Journal of Food Science and Nutrition, 4(5):156–162 (2019). [Google Scholar]
- R.P. Aidoo, F. Depypere, E.O. Afoakwa, & K. Dewettinck. Industrial manufacture of sugar-free chocolates– applicabilityof alternative sweeteners andcarbohydrate polymers as raw materials in product development. Trends in Food Science & Technology, 32: 84–96 (2013). [CrossRef] [Google Scholar]
- G.H. Singh, & G. Khanna. Effect of skim milk powder, soy protein concentrate and sucrose on the dehydration behaviour, texture, colour and acceptability of mango leather. J. Food Engineering, 55: 343–348 (2002). [CrossRef] [Google Scholar]
- M. Grembecka. Sugar alcohols-their role in the modern world of sweeteners: A review, European Food Research and Technology, 241: 1–14 (2015). [CrossRef] [Google Scholar]
- A.H. Rahmani, & Y.H. Aldebasi. Potential role of carica papaya and their active constituents in the prevention and treatment of diseases. Int J Pharm Pharm Sci., 8(1):11–15 (2016). [CrossRef] [Google Scholar]
- A. Sharma, H. Mahajan, J.P. Dwivedi, & M. Gupta. Optimization of nutritionally enriched mango bar using response surface methodology. Journal of Food Measurement and Characterization, 9(2):152–159 (2015). [CrossRef] [Google Scholar]
- M.M. Simon, M. Cousin, & G. Edmore. Morphological Diversity among Accessions of Apple Tree (Malus × Domestica Borkh), Advances in Agriculture, 16 (2021). [Google Scholar]
- H.T. ChanJr. & C.G. Cavaletto. Dehydration and storage stability of papaya leather. Journal of Food Science, 43, 1723–1725 (1978). [CrossRef] [Google Scholar]
- S. Suna. “Effects of hot air,microwave and vaccum drying on drying characteristics and in vitro bio accessibility of medlar fruit leather (pestil),”. The korean Society of Food Science and Technology (2019). [Google Scholar]
- D. Ŝeremet, A. Mandura, A. Vojvodić, A. Martinić, K. Galić, & D. Komes. Challenges in confectionery industry: Development and storage stability of innovative white tea-based candies. J. Food Sci.; 85:2060–2068 (2020). [CrossRef] [PubMed] [Google Scholar]
- A. Mirzaei-Aghsaghali, & N. Maheri-Sis. Nutritive Value of Some Agro-Industrial By-Products for Ruminants a Review. World J. Zool., 3, 40–46 (2008). [Google Scholar]
- M.G. Cruz, R. Bastos, M. Pinto, J.M. Ferreira, J.F. Santos, D.F. Wessel, E. Coelho, & M.A. Coimbra. Waste mitigation: From an effluent of apple juice concentrate industry to a valuable ingredient for food and feed applications. Journal of Cleaner Production, 193, 652–660 (2018). [CrossRef] [Google Scholar]
- R. Corfield, M.C. Allievi, R. Rivero, T.A. López, O.E. Pérez, D. Salvatori, & C. Schebor. An Apple and Acáchul Berry Snack Rich in Bioaccessible Antioxidants and Folic Acid: A Healthy Alternative for Prenatal Diets. Foods, Vol.13(5):692 (2024). [CrossRef] [PubMed] [Google Scholar]
- F.R. Thewes, A. Brackmann, V. Both, A. Weber, R.O. Anese, T.S. Ferrão, & R. Wagner. The different impacts of dynamic controlled atmosphere and controlled atmosphere storage in the quality attributes of ‘Fuji Suprema’ apples. Postharvest Biol. Technol, 130:7–20 (2017). [Google Scholar]
- F. Lyu, S. Luiz, D. Azeredo, S. Ajlouni, & S. Ranadheera. Apple Pomace as a Functional and Healthy Ingredient in Food Products: A Review, 8(3):319 (2020). [Google Scholar]
- D.S.A. Van, M. Dekker, J.A. De, & W. Jongen. Activity and concentration of polyphenolic antioxidants in apple: effect of cultivar, harvest year, and storage conditions. J Agri Food Chem, 49:3606–3613 (2001). [CrossRef] [PubMed] [Google Scholar]
- T. Vij, & Y. Prashar. Medicinal properties of Carica papaya Linn. Asian Pac J Trop Dis., 5(1):1–6 (2015). [Google Scholar]
- K. Jalgaonkar, M. Mahawar, B. Arora, & B. Bibwe. Utilization of Papaya as a raw material for Food processing industry. Processed Food Industry, Vol. 21 (2018). [Google Scholar]
- A. Mirza., A. Srujana., P.N. Navya, & V.J. Johnson. Industrial Applications of Using Papaya and Various Parts of the Plant as a Source of Proteolytic Enzymes Papaya and Its Applications, Vol. 10 (2023). [Google Scholar]
- M. Esti, I. Benucci, C. Lombardelli, K. Liburdi, & A. Garzillo. Papain from papaya (Carica papaya L.) fruit and latex: Preliminary characterization in alcoholic–acidic buffer for wine application, Food and Bioproducts Processing, 91(4):595–598 (2013). [CrossRef] [Google Scholar]
- R.R.S. Vijay, A.J. Sachin, C. Kavitha, & P. Kalal. Papaya (Carica papaya L.) Tropical Fruit Crops: Theory to Practical, Indian Institute of Horticultural Research, 426–468 (2021). [Google Scholar]
- M. Małachowska, & K. Tomala. Apple Quality during Shelf-Life after Long-Term Storage and Simulated Transport. Agriculture, 13(11):2045 (2023). [CrossRef] [Google Scholar]
- EM.P. G.S. Yahia, & E.M.C. María. Contribution of Fruits and Vegetables to Human Nutrition and Health, Editor(s): E.M. Yahia, Postharvest Physiology and Biochemistry of Fruits and Vegetables, Woodhead Publishing, 19–45 (2019). [Google Scholar]
- K. Vikrant, S. Jaivir, C. Suresh, K. Ratnesh, K. Sunil, K. Singh., C. Vipul, & K. Pankaj. Post Harvest Technology of Papaya Fruits & its Value Added Products A Review. Int. J. Pure App. Biosci. 7 (2): 169–181 (2019). [CrossRef] [Google Scholar]
- S. Bhuvaneswari, R.D.V. Sudhakar, & K.G. Senthi. Shelflife extension of Papaya (Carica papaya L.) Packaged in customised corrugated fiber board (CFB) box after subjecting to vibration and drop test, vol. 17, no. 1, 341–347 (2017). [Google Scholar]
- Z. Fazly, S. Mozhiarasi, A. Wan, & G. Ainun. Optimum Postharvest Handling-Effect of Temperature on Quality and Shelf Life of Tropical Fruits and Vegetables. Journal of Tropical Resources and Sustainable Science (JTRSS) 7:23–30 (2019). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.