Open Access
Issue |
BIO Web Conf.
Volume 111, 2024
2024 6th International Conference on Biotechnology and Biomedicine (ICBB 2024)
|
|
---|---|---|
Article Number | 01021 | |
Number of page(s) | 5 | |
Section | Genetic Engineering and Biotechnology Innovation | |
DOI | https://doi.org/10.1051/bioconf/202411101021 | |
Published online | 31 May 2024 |
- Canale F.P., Basso C., Antonini G., et al. (2021) Metabolic modulation of tumor s with engineered bacteria for immunotherapy. J. Nature, 598(7882): 662–6 [CrossRef] [PubMed] [Google Scholar]
- Grzywa T.M., Sosnowska, A., Matryba, P., et al. (2020) Myeloid Cell-Derived Arginase in Cancer Immune Response. J. Front Immunol, 11: 938. [CrossRef] [Google Scholar]
- Geiger R., Rieckmann J.C., Wolf, T., et al. (2016) L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-tumor Activity. J. Cell, 167(3): 829–42e13. [CrossRef] [Google Scholar]
- Matsumoto S., Häberle J., Kido J., et al. (2019) Urea cycle disorders-update. J. J Hum Genet, 64(9): 833–47 [CrossRef] [PubMed] [Google Scholar]
- Sung H., Ferlay J., Siegel R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. J. CA Cancer J Clin, 71(3): 209–49 [CrossRef] [PubMed] [Google Scholar]
- Yong C., Stewart G.D., Frezza, C. (2020) Oncometabolites in renal cancer. J. Nat Rev Nephrol, 16(3): 156–72 [CrossRef] [PubMed] [Google Scholar]
- Hajaj E., Sciacovelli M., Frezza C., et al. (2021) The context-specific roles of urea cycle enzymes in tumorigenesis. J. Mol Cell, 81(18): 3749–59 [CrossRef] [Google Scholar]
- Rabinovich S., Adler L., Yizhak K., et al. (2015) Diversion of aspartate in ASS1-deficient tumor s fosters de novo pyrimidine synthesis. J. Nature, 527(7578): 379–83 [CrossRef] [PubMed] [Google Scholar]
- Linehan W.M., Ricketts C.J. (2019) The Cancer Genome Atlas of renal cell carcinoma: findings and clinical implications. J. Nat Rev Urol, 16(9): 539–52 [CrossRef] [PubMed] [Google Scholar]
- Peyraud F., Guégan J.P., Bodet, D., et al. (2022) Circulating L-arginine predicts the survival of cancer patients treated with immune checkpoint inhibitors. J. Ann Oncol, 33(10): 1041–51 [CrossRef] [Google Scholar]
- Nagamani S.C., Erez, A. (2016) A metabolic link between the urea cycle and cancer cell proliferation. J. Mol Cell Oncol, 3(2): e1127314. [CrossRef] [Google Scholar]
- Rabinovich S., Silberman A., Adler L., et al. (2020) The mitochondrial carrier Citrin plays a role in regulating cellular energy during carcinogenesis. J. Oncogene, 39(1): 164–75 [CrossRef] [PubMed] [Google Scholar]
- Birsoy K., Wang T., Chen W.W., et al. (2015) An Essential Role of the Mitochondrial Electron Transport Chain in Cell Proliferation Is to Enable Aspartate Synthesis. J. Cell, 162(3): 540–51 [CrossRef] [Google Scholar]
- Kobayashi E., Masuda M., Nakayama R., et al. (2010) Reduced argininosuccinate synthase is a predictive biomarker for the development of pulmonary metastasis in patients with osteosarcoma. J. Mol Cancer Ther, 9(3): 535–44 [CrossRef] [PubMed] [Google Scholar]
- Tao X., Zuo Q., Ruan H., et al. (2019) Argininosuccinate synthase 1 suppresses cancer cell invasion by inhibiting STAT3 pathway in hepatocellular carcinoma. J. Acta Biochim Biophys Sin (Shanghai), 51(3): 263–76 [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.