Open Access
Issue
BIO Web Conf.
Volume 111, 2024
2024 6th International Conference on Biotechnology and Biomedicine (ICBB 2024)
Article Number 01022
Number of page(s) 7
Section Genetic Engineering and Biotechnology Innovation
DOI https://doi.org/10.1051/bioconf/202411101022
Published online 31 May 2024
  • X. Xu, Y. Chen, H. Pan, et al. Genomic characterization of Salmonella Uzaramo for human invasive infection. [J]. Microbial Genomics, 6, mgen000401(2020) [Google Scholar]
  • R.R. Wittler. Foodborne and Waterborne Illness. [J]. Pediatrics in Review, 44, 81–91 (2023) [CrossRef] [PubMed] [Google Scholar]
  • R. Silva, F.M. Gomes. Evolution of the Major Components of Innate Immunity in Animals. [J]. J Mol Evol, 92, 3–20 (2024) [CrossRef] [PubMed] [Google Scholar]
  • K. Seo, J. Seo, J. Yeun, et al. The role of mucosal barriers in human gut health. [J]. Arch Pharm Res, 44, 325-41(2021) [CrossRef] [PubMed] [Google Scholar]
  • M. Sadeghi, S. Dehnavi, M. Sharifat, et al. Innate immune cells: Key players of orchestra in modulating tumor microenvironment (TME). [J]. Heliyon, 10, e27480(2024) [CrossRef] [Google Scholar]
  • S. Shaji, R.K. Selvaraj, R. Shanmugasundaram. Salmonella Infection in Poultry: A Review on the Pathogen and Control Strategies. [J]. Microorganisms, 11, 2814 (2023) [CrossRef] [Google Scholar]
  • M.J. Worley. Salmonella Bloodstream Infections. [J]. Trop Med Infect Dis, 8, 487 (2023) [CrossRef] [Google Scholar]
  • J.R. Kurtz, J.A. Goggins, J.B. McLachlan. Salmonella infection: Interplay between the bacteria and host immune system. [J]. Immunology Letters, 190, 42–50 (2017) [CrossRef] [Google Scholar]
  • M. Wang, I.H. Qazi, L. Wang, et al. Salmonella Virulence and Immune Escape. [J]. Microorganisms, 8, 407(2020) [CrossRef] [Google Scholar]
  • H. Bao, S. Wang, J.-H. Zhao, et al. Salmonella secretion systems: Differential roles in pathogen-host interactions. [J]. Microbiological Research, 241, 126591(2020) [CrossRef] [Google Scholar]
  • T. Rehman, L. Yin, M.B. Latif, et al. Adhesive mechanism of different Salmonella fimbrial adhesins. [J]. Microbial Pathogenesis, 137, 103748(2019) [CrossRef] [Google Scholar]
  • B. Yuan, J. Scholz, J. Wald, et al. Structural basis for subversion of host cell actin cytoskeleton during Salmonella infection. [J]. Science Advances, 9, eadj5777(2023) [CrossRef] [Google Scholar]
  • V. Kumar, J.H. Stewart. cGLRs Join Their Cousins of Pattern Recognition Receptor Family to Regulate Immune Homeostasis. [J]. Int J Mol Sci, 25, 1828 (2024) [CrossRef] [Google Scholar]
  • Q. Deng, S. Yang, K. Huang, et al. NLRP6 induces RIP1 kinase-dependent necroptosis via TAK1-mediated p38(MAPK)/MK2 phosphorylation in S. typhimurium infection. [J]. iScience, 27, 109339(2024) [CrossRef] [Google Scholar]
  • H. Huang, Z. Even, Z. Wang, et al. Proteomics Profiling Reveals Regulation of Immune Response to Salmonella enterica Serovar Typhimurium Infection in Mice. [J]. Infect Immun, 91, e00499-22(2023) [Google Scholar]
  • F. Yang, X. Sheng, X. Huang, et al. Interactions between Salmonella and host macrophages -Dissecting NF-kappaB signaling pathway responses. [J]. Microb Pathog, 154, 104846(2021) [CrossRef] [Google Scholar]
  • D. Bierschenk, D. Boucher, K. Schroder. Salmonella-induced inflammasome activation in humans. [J]. Mol Immunol, 86, 38–43 (2017) [CrossRef] [Google Scholar]
  • P.J. Hume, V. Singh, A.C. Davidson, et al. Swiss Army Pathogen: The Salmonella Entry Toolkit. [J]. Frontiers in Cellular and Infection Microbiology, 7, 348(2017) [CrossRef] [Google Scholar]
  • S. Liu, Z. Dong, W. Tang, et al. Dietary iron regulates intestinal goblet cell function and alleviates Salmonella typhimurium invasion in mice. [J]. Sci China Life Sci, 66, 2006-19(2023) [CrossRef] [PubMed] [Google Scholar]
  • G.M.H. Birchenough, M.E.V. Johansson. Forming a mucus barrier along the colon. [J]. Science, 370, 402–03 (2020) [CrossRef] [PubMed] [Google Scholar]
  • M.A. McGuckin, J.M. Davies, P. Felgner, et al. MUC13 Cell Surface Mucin Limits Salmonella Typhimurium Infection by Protecting the Mucosal Epithelial Barrier. [J]. Cellular and Molecular Gastroenterology and Hepatology, 16, 985-1009 (2023) [CrossRef] [Google Scholar]
  • A. Fusco, V. Savio, M. Donniacuo, et al. Antimicrobial Peptides Human Beta-Defensin-2 and -3 Protect the Gut During Candida albicans Infections Enhancing the Intestinal Barrier Integrity: In Vitro Study. [J]. Frontiers in Cellular and Infection Microbiology, 11, 666900(2021) [CrossRef] [Google Scholar]
  • U. Meyer-Hoffert, M.W. Hornef, B. Henriques-Normark, et al. Secreted enteric antimicrobial activity localises to the mucus surface layer. [J]. Gut, 57, 764–71 (2008) [CrossRef] [PubMed] [Google Scholar]
  • Q. Wang, Y. Xu, J. Hu. Intracellular mechanism of antimicrobial peptide HJH-3 against Salmonella pullorum. [J]. RSC Advances, 12, 14485–91 (2022) [CrossRef] [Google Scholar]
  • Y. Xu, Q. Wang, M. Dong, et al. Evaluation of the efficacy of the antimicrobial peptide HJH-3 in chickens infected with Salmonella Pullorum. [J]. Frontiers in Microbiology, 14, 1102789 (2023) [CrossRef] [Google Scholar]
  • G. Zhou, J. Wang, X. Zhu, et al. Induction of maggot antimicrobial peptides and treatment effect inSalmonella pullorum-infected chickens. [J]. Journal of Applied Poultry Research, 23, 376–83 (2014) [CrossRef] [Google Scholar]
  • S. Shen, F. Ren, J. He, et al. Recombinant Antimicrobial Peptide OaBac5mini Alleviates Inflammation in Pullorum Disease Chicks by Modulating TLR4/MyD88/NF-kappaB Pathway. [J]. Animals (Basel), 13, 1515 (2023) [Google Scholar]
  • S. Herp, S. Brugiroux, D. Garzetti, et al. Mucispirillum schaedleri Antagonizes Salmonella Virulence to Protect Mice against Colitis. [J]. Cell Host & Microbe, 25, 681-94.e8(2019) [CrossRef] [Google Scholar]
  • X. Peng, A. Ed-Dra, Y. Song, et al. Lacticaseibacillus rhamnosus alleviates intestinal inflammation and promotes microbiota-mediated protection against Salmonella fatal infections. [J]. Front Immunol, 13, 973224 (2022) [CrossRef] [Google Scholar]
  • Q.R. Ducarmon, R.D. Zwittink, B.V.H. Hornung, et al. Gut Microbiota and Colonization Resistance against Bacterial Enteric Infection. [J]. Microbiology and Molecular Biology Reviews, 83, (2019) [Google Scholar]
  • S. Xie, H. Zhang, R.S. Matjeke, et al. Bacillus coagulans protect against Salmonella enteritidis-induced intestinal mucosal damage in young chickens by inducing the differentiation of goblet cells. [J]. Poultry Science, 101, 101639 (2022) [CrossRef] [Google Scholar]
  • G. Chemin, A. De Giacomoni, P.E. Joubert. Plasticity of programmed cell death pathways while fighting Salmonella, plenty of possibilities to defend against pathogens. [J]. Med Sci (Paris), 37, 814–16 (2021) [Google Scholar]
  • G.S. Kopeina, B. Zhivotovsky. Programmed cell death: Past, present and future. [J]. Biochem Biophys Res Commun, 633, 55–58 (2022) [CrossRef] [Google Scholar]
  • J.M. Stringer, L.R. Alesi, A.L. Winship, et al. Beyond apoptosis: evidence of other regulated cell death pathways in the ovary throughout development and life. [J]. Human Reproduction Update, 29, 434–56 (2023) [CrossRef] [PubMed] [Google Scholar]
  • H. Miyashita, D. Oikawa, S. Terawaki, et al. Crosstalk Between NDP52 and LUBAC in Innate Immune Responses, Cell Death, and Xenophagy. [J]. Front Immunol, 12, 635475 (2021) [CrossRef] [Google Scholar]
  • N. Ketelut-Carneiro, K.A. Fitzgerald. Apoptosis, Pyroptosis, and Necroptosis—Oh My! The Many Ways a Cell Can Die. [J]. Journal of Molecular Biology, 434, 167378 (2022) [CrossRef] [Google Scholar]
  • T.J. Abele, Z.P. Billman, L. Li, et al. Apoptotic signaling clears engineered Salmonella in an organspecific manner. [J]. eLife, 12, RP89210(2023) [CrossRef] [Google Scholar]
  • C. Yu, F. Du, C. Zhang, et al. Salmonella enterica serovar Typhimurium sseK3 induces apoptosis and enhances glycolysis in macrophages. [J]. BMC Microbiology, 20, 151 (2020) [CrossRef] [Google Scholar]
  • K. Ding, C. Zhang, J. Li, et al. CAMP Receptor Protein of Salmonella enterica Serovar Typhimurium Modulate Glycolysis in Macrophages to Induce Cell Apoptosis. [J]. Current Microbiology, 76, 1–6 (2019) [CrossRef] [PubMed] [Google Scholar]
  • H.-H. Lin, H.-L. Chen, C.-C. Weng, et al. Activation of apoptosis by Salmonella pathogenicity island-1 effectors through both intrinsic and extrinsic pathways in Salmonella-infected macrophages. [J]. Journal of Microbiology, Immunology and Infection, 54, 616–626 (2021) [CrossRef] [Google Scholar]
  • K. Venkataranganayaka Abhilasha, G. Kedihithlu Marathe. Bacterial lipoproteins in sepsis. [J]. Immunobiology, 226, 152128 (2021) [CrossRef] [Google Scholar]
  • J.E. Casanova. Bacterial Autophagy: Offense and Defense at the Host-Pathogen Interface. [J]. Cellular and Molecular Gastroenterology and Hepatology, 4, 237–43 (2017) [CrossRef] [Google Scholar]
  • L. Zheng, F. Wei, G. Li. The crosstalk between bacteria and host autophagy: host defense or bacteria offense. [J]. J Microbiol, 60, 451–60 (2022) [CrossRef] [Google Scholar]
  • L.A. Knodler. Salmonella enterica: living a double life in epithelial cells. [J]. Current Opinion in Microbiology, 23, 23–31 (2015) [CrossRef] [Google Scholar]
  • L.H. Wu, C.R. Pangilinan, C.H. Lee. Downregulation of AKT/mTOR signaling pathway for Salmonella-mediated autophagy in human anaplastic thyroid cancer. [J]. Journal of Cancer, 13, 3268–79 (2022) [CrossRef] [Google Scholar]
  • X. Cen, Z. Li, X. Chen. Ubiquitination in the regulation of autophagy. [J]. Acta Biochim Biophys Sin (Shanghai), 55, 1348–57 (2023) [CrossRef] [PubMed] [Google Scholar]
  • M. Polajnar, M.S. Dietz, M. Heilemann, et al. Expanding the host cell ubiquitylation machinery targeting cytosolic Salmonella. [J]. EMBO reports, 18, 1572–85 (2017) [CrossRef] [PubMed] [Google Scholar]
  • D.H. Kwon, H.K. Song. A Structural View of Xenophagy, a Battle between Host and Microbes. [J]. Molecules and Cells, 41, 27–34 (2018) [Google Scholar]
  • K. Liu, L. Kong, D.B. Graham, et al. SAC1 regulates autophagosomal phosphatidylinositol-4-phosphate for xenophagy-directed bacterial clearance. [J]. Cell Reports, 36, 109434 (2021) [CrossRef] [Google Scholar]
  • Jamaal L. Benjamin, R. Sumpter, B. Levine, et al. Intestinal Epithelial Autophagy Is Essential for Host Defense against Invasive Bacteria. [J]. Cell Host & Microbe, 13, 723–34 (2013) [CrossRef] [Google Scholar]
  • A. Suwandi, M.B. Menon, A. Kotlyarov, et al. P38MAPK/MK2 signaling stimulates host cells autophagy pathways to restrict Salmonella infection. [J]. Frontiers in Immunology, 14, 1245443 (2023) [CrossRef] [Google Scholar]
  • Q. Chai, Z. Lei, C.H. Liu. Pyroptosis modulation by bacterial effector proteins. [J]. Seminars in Immunology, 69, 101804 (2023) [CrossRef] [Google Scholar]
  • H.C. Huston, M.J. Anderson, S.L. Fink. Pyroptosis and the cellular consequences ofgasdermin pores. [J]. Seminars in Immunology, 69, 101803 (2023) [CrossRef] [Google Scholar]
  • F. Shao. Gasdermins: making poresfor pyroptosis. [J]. Nature Reviews Immunology, 21, 620–21 (2021) [CrossRef] [Google Scholar]
  • J.C. Santos, D. Boucher, L.K. Schneider, et al. Human GBP1 binds LPS to initiate assembly of a caspase-4 activating platform on cytosolic bacteria. [J]. Nature Communications, 11, 3276 (2020) [CrossRef] [Google Scholar]
  • C. Rogers, T. Fernandes-Alnemri, L. Mayes, et al. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. [J]. Nature Communications, 8, 14128 (2017) [CrossRef] [Google Scholar]
  • S.M. Crowley, X. Han, J.M. Allaire, et al. Intestinal restriction of Salmonella Typhimurium requires caspase-1 and caspase-11 epithelial intrinsic inflammasomes. [J]. PLOS Pathogens, 16, e1008498 (2020) [CrossRef] [Google Scholar]
  • L. Xiong, S. Wang, J.W. Dean, et al. Group 3 innate lymphoid cell pyroptosis represents a host defence mechanism against Salmonella infection. [J]. Nature Microbiology, 7, 1087–99 (2022) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.