Open Access
Issue |
BIO Web Conf.
Volume 127, 2024
The International Conference and Workshop on Biotechnology (ICW Biotech 2024)
|
|
---|---|---|
Article Number | 07001 | |
Number of page(s) | 9 | |
Section | Omics Approaches and Functional Food for Nutrition Improvement | |
DOI | https://doi.org/10.1051/bioconf/202412707001 | |
Published online | 13 September 2024 |
- Q. Xiang, A. A. Lott, S. M. Assmann, and S. Chen, Advances and perspectives in the metabolomics of stomatal movement and the disease triangle, Elsevier Ireland Ltd. (2021). doi: 10.1016/j.plantsci.2020.110697. [Google Scholar]
- D. Nagrath, C. Caneba, T. Karedath, and N. Bellance, Metabolomics for mitochondrial and cancer studies. (2011). doi: 10.1016/j.bbabio.2011.03.006. [Google Scholar]
- S. Shen, C. Zhan, C. Yang, A. R. Fernie, and J. Luo, Metabolomics-centered mining of plant metabolic diversity and function: Past decade and future perspectives. (2023) Cell Press. doi: 10.1016/j.molp.2022.09.007. [Google Scholar]
- J. Chen et al., Metabolite-based genome-wide association study enables dissection of the flavonoid decoration pathway of wheat kernels, Plant Biotechnol J. 18, 1722–1735 (2020) doi: 10.1111/pbi.13335. [CrossRef] [PubMed] [Google Scholar]
- S. Koshiba et al., Identification of critical genetic variants associated with metabolic phenotypes of the Japanese population, Commun Biol. 3, 1. (2020). doi: 10.1038/s42003-020-01383-5. [CrossRef] [PubMed] [Google Scholar]
- M. Kortesniemi et al., Nutritional metabolomics: Recent developments and future needs. (2023). doi: 10.1016/j.cbpa.2023.102400. [Google Scholar]
- A. Delvaux, E. Rathahao-Paris, and S. Alves, Different ion mobility-mass spectrometry coupling techniques to promote metabolomics, John Wiley and Sons Inc. (2022) doi: 10.1002/mas.21685. [Google Scholar]
- K. Kim, I. J. Chun, J. H. Suh, and J. Sung, Relationships between sensory properties and metabolomic profiles of different apple cultivars, Food Chem X, 18. (2023). doi: 10.1016/j.fochx.2023.100641. [Google Scholar]
- J. Li et al., Research Progress and Trends in Metabolomics of Fruit Trees, Frontiers Media S.A. (2022). doi: 10.3389/fpls.2022.881856. [Google Scholar]
- M. A. Farag, N. Hegazi, E. Dokhalahy, and A. R. Khattab, Chemometrics based GC-MS aroma profiling for revealing freshness, origin and roasting indices in saffron spice and its adulteration, Food Chem. 331. (2020). doi: 10.1016/j.foodchem.2020.127358. [Google Scholar]
- A. Hanifah, H. Firmanto, S. P. Putri, and E. Fukusaki, Unique metabolite profiles of Indonesian cocoa beans from different origins and their correlation with temperature, J Biosci Bioeng. 134, 125–132. (2022). doi: 10.1016/j.jbiosc.2022.05.001. [CrossRef] [PubMed] [Google Scholar]
- F. Herrera-Rocha et al., Bioactive and flavor compounds in cocoa liquor and their traceability over the major steps of cocoa post-harvesting processes, Food Chem. 435. (2024). doi: 10.1016/j.foodchem.2023.137529. [CrossRef] [PubMed] [Google Scholar]
- J. M. Moreno-Rojas et al., Impact of the pre-drying process on the volatile profile of onfarm processed Ecuadorian bulk and fine-flavour cocoa varieties, Food Research International. 169. (2023). doi: 10.1016/j.foodres.2023.112938. [Google Scholar]
- D. Velásquez-Reyes, J. Rodríguez-Campos, C. Avendaño-Arrazate, A. Gschaedler, M. Alcázar-Valle, and E. Lugo-Cervantes, “Forastero and Criollo cocoa beans, differences on the profile of volatile and non-volatile compounds in the process from fermentation to liquor, Heliyon. 9, 4. (2023). doi: 10.1016/j.heliyon.2023.e15129. [CrossRef] [PubMed] [Google Scholar]
- F. S. Aurum, M. Z. Zaman, E. Purwanto, D. Praseptiangga, and K. Nakano, Coffee authentication via targeted metabolomics and machine learning: Unveiling origins and their discriminating biochemicals, Food Biosci. 56. (2023). doi: 10.1016/j.fbio.2023.103122. [CrossRef] [Google Scholar]
- F. Amalia, P. Aditiawati, Yusianto, S. P. Putri, and E. Fukusaki, Gas chromatography/mass spectrometry-based metabolite profiling of coffee beans obtained from different altitudes and origins with various postharvest processing, Metabolomics. 17, 7. (2021). doi: 10.1007/s11306-021-01817-z. [CrossRef] [PubMed] [Google Scholar]
- A. C. R. Silva, C. C. da Silva, R. Garrett, and C. M. Rezende, Comprehensive lipid analysis of green Arabica coffee beans by LC-HRMS/MS, Food Research International. 137. (2020). doi: 10.1016/j.foodres.2020.109727. [Google Scholar]
- M. N. Iman, R. Irdiani, D. Rahmawati, E. Fukusaki, and S. P. Putri, Improvement of the functional value of green soybean (edamame) using germination and tempe fermentation: A comparative metabolomics study, J Biosci Bioeng. 136, 205–212. (2023). doi: 10.1016/j.jbiosc.2023.05.012. [CrossRef] [PubMed] [Google Scholar]
- M. Cladière, G. Delaporte, E. Le Roux, and V. Camel, Multi-class analysis for simultaneous determination of pesticides, mycotoxins, process-induced toxicants and packaging contaminants in tea, Food Chem. 242, 113–121. (2018). doi: 10.1016/j.foodchem.2017.08.108. [CrossRef] [PubMed] [Google Scholar]
- L. Brennan and B. de Roos, Role of metabolomics in the delivery of precision nutrition, Redox Biol. 65, 1. (2023). doi: 10.1016/j.redox.2023.102808. [CrossRef] [PubMed] [Google Scholar]
- Z. Naureen et al., Metabolomics application for the design of an optimal diet, NLM (Medline). (2022). doi: 10.15167/2421-4248/jpmh2022.63.2S3.2755. [Google Scholar]
- J. Selamat, N. A. A. Rozani, and S. Murugesu, Application of the metabolomics approach in food authentication, MDPI. (2021). doi: 10.3390/molecules26247565. [Google Scholar]
- M. N. Iman et al., Multidisciplinary approach combining food metabolomics and epidemiology identifies meglutol as an important bioactive metabolite in tempe, an Indonesian fermented food, Food Chem. 446. (2024). doi: 10.1016/j.foodchem.2024.138744. [Google Scholar]
- P. S. Hew et al., Quality and safety of food product – Current assessment, issues, and metabolomics as a way forward, Elsevier Ltd. (2024). doi: 10.1016/j.focha.2024.100632. [Google Scholar]
- S. P. Putri et al., Application of gas chromatography-mass spectrometry-based metabolomics in food science and technology, Elsevier B.V., (2022), doi: 10.1016/j.jbiosc.2022.01.011. [Google Scholar]
- M. Drira, H. Kelebek, G. Guclu, H. Jabeur, S. Selli, and M. Bouaziz, Targeted analysis for detection the adulteration in extra virgin olive oil’s using LC-DAD/ESI–MS/MS and combined with chemometrics tools, European Food Research and Technology. 246, 1661–1677. (2020). doi: 10.1007/s00217-020-03522-y. [CrossRef] [Google Scholar]
- M. M. M. Ikram, S. Ridwani, S. P. Putri, and E. Fukusaki, GC-MS based metabolite profiling to monitor ripening-specific metabolites in pineapple (Ananas comosus), Metabolites. 10, 4 (2020). doi: 10.3390/metabo10040134. [Google Scholar]
- S. M. Padilla-Jimenez, M. V. Angoa-Pérez, H. G. Mena-Violante, G. Oyoque-Salcedo, M. Renteria-Ortega, and E. Oregel-Zamudio, Changes in the Aroma of Organic Blackberries (Rubus Fruticosus) During Ripeness, Analytical Chemistry Letters. 9, 64–73 (2019). doi: 10.1080/22297928.2019.1577168. [CrossRef] [Google Scholar]
- M. Sato, M. M. M. Ikram, H. Pranamuda, W. Agusta, S. P. Putri, and E. Fukusaki, Characterization of five Indonesian mangoes using gas chromatography–mass spectrometry-based metabolic profiling and sensory evaluation, J Biosci Bioeng. 132, 613–620 (2021). doi: 10.1016/j.jbiosc.2021.09.006. [CrossRef] [PubMed] [Google Scholar]
- N. Jiang et al., “Combined LC-MS-based metabolomics and GC-IMS analysis reveal changes in chemical components and aroma components of Jujube leaf tea during processing,” Front Plant Sci, 14, 2023, doi: 10.3389/fpls.2023.1179553. [Google Scholar]
- A. A. B. Sajak, A. Azlan, F. Abas, and H. Hamzah, Quality control of herbal medicines in hyperlipidaemia: Metabolomics approach, Universiti Putra Malaysia. (2023). doi: 10.47836/ifrj.30.3.01. [Google Scholar]
- P. Balkir, K. Kemahlioglu, and U. Yucel, Foodomics: A new approach in food quality and safety. Elsevier Ltd. (2021). doi: 10.1016/j.tifs.2020.11.028. [Google Scholar]
- C. R. Chowdhury et al., NMR-based metabolomics as a significant tool for human nutritional research and health applications, Elsevier Ltd. (2023). doi: 10.1016/j.fbio.2023.102538. [Google Scholar]
- J. Li, T. Vosegaard, and Z. Guo, Applications of nuclear magnetic resonance in lipid analyses: An emerging powerful tool for lipidomics studies, Elsevier Ltd. (2017). doi: 10.1016/j.plipres.2017.09.003. [Google Scholar]
- Y. Nolvachai, C. Kulsing, and P. J. Marriott, Multidimensional gas chromatography in food analysis, Elsevier B.V. (2017). doi: 10.1016/j.trac.2017.05.001. [Google Scholar]
- D. D. Marshall and R. Powers, Beyond the paradigm: Combining mass spectrometry and nuclear magnetic resonance for metabolomics, Elsevier B.V. (2017). doi: 10.1016/j.pnmrs.2017.01.001. [Google Scholar]
- W. A. Khan et al., Untargeted metabolomics and comparative flavonoid analysis reveal the nutritional aspects of pak choi, Food Chem. 383, (2022). doi: 10.1016/j.foodchem.2022.132375. [Google Scholar]
- S. J. Duthie et al., Effect of increasing fruit and vegetable intake by dietary intervention on nutritional biomarkers and attitudes to dietary change: a randomised trial, Eur J Nutr, 57, no. 5, pp. 1855–1872, Aug. 2018, doi: 10.1007/s00394-017-1469-0. [CrossRef] [PubMed] [Google Scholar]
- H. Tao et al., “Comparative metabolomics of flavonoids in twenty vegetables reveal their nutritional diversity and potential health benefits,” Food Research International, vol. 164 (2023). doi: 10.1016/j.foodres.2022.112384. [Google Scholar]
- Y. Zhao et al., A comparative metabolomics analysis of phytochemcials and antioxidant activity between broccoli floret and by-products (leaves and stalks), Food Chem. 443 (2024). doi: 10.1016/j.foodchem.2024.138517. [Google Scholar]
- D. Rahmawati, M. Astawan, S. P. Putri, and E. Fukusaki, “Gas chromatography-mass spectrometry-based metabolite profiling and sensory profile of Indonesian fermented food (tempe) from various legumes, J Biosci Bioeng. 132, 487–495 (2021). doi: 10.1016/j.jbiosc.2021.07.001. [CrossRef] [PubMed] [Google Scholar]
- M. B. Yunindanova, S. P. Putri, H. Novarianto, and E. Fukusaki, Characteristics of kopyor coconut (Cocos nucifera L.) using sensory analysis and metabolomics-based approach, J Biosci Bioeng, 138, 44–53 (2024). doi: 10.1016/j.jbiosc.2024.02.008. [CrossRef] [PubMed] [Google Scholar]
- U. Jumhawan, S. P. Putri, Yusianto, T. Bamba, and E. Fukusaki, Quantification of coffee blends for authentication of Asian palm civet coffee (Kopi Luwak) via metabolomics: A proof of concept, J Biosci Bioeng, 122, 79–84 (2016). doi: 10.1016/j.jbiosc.2015.12.008. [CrossRef] [PubMed] [Google Scholar]
- W. Wu et al., Emerging applications of metabolomics in food science and future trends,” Food Chem X, 16 (2022). doi: 10.1016/j.fochx.2022.100500. [Google Scholar]
- E. Smith et al., “A healthy dietary metabolic signature is associated with a lower risk for type 2 diabetes and coronary artery disease,” BMC Med. 20 (2022). doi: 10.1186/s12916-022-02326-z. [PubMed] [Google Scholar]
- N. Bar et al., A reference map of potential determinants for the human serum metabolome, Nature. 588, 135–140 (2020). doi: 10.1038/s41586-020-2896-2. [CrossRef] [PubMed] [Google Scholar]
- S. Qi, X. Li, J. Yu, and L. Yin, Research advances in the application of metabolomics in exercise science, Frontiers Media SA. (2023). doi: 10.3389/fphys.2023.1332104. [Google Scholar]
- S. D. Ohlhorst et al., Nutrition research to affect food and a healthy life span, Journal of Nutrition. 143, 1349–1354 (2013). doi: 10.3945/jn.113.180638. [CrossRef] [Google Scholar]
- G. Lagoumintzis and G. P. Patrinos, Triangulating nutrigenomics, metabolomics and microbiomics toward personalized nutrition and healthy living, BioMed Central Ltd. (2023). doi: 10.1186/s40246-023-00561-w. [Google Scholar]
- D. Syukri et al., Identification of a freshness marker metabolite in stored soybean sprouts by comprehensive mass-spectrometric analysis of carbonyl compounds, Food Chem. 269, 588–594 (2018). doi: 10.1016/j.foodchem.2018.07.036. [CrossRef] [PubMed] [Google Scholar]
- E. Cubero-Leon, O. De Rudder, and A. Maquet, Metabolomics for organic food authentication: Results from a long-term field study in carrots, Food Chem. 239, 760–770 (2018). doi: 10.1016/j.foodchem.2017.06.161. [CrossRef] [PubMed] [Google Scholar]
- Q. Wei et al., Metabolomics analysis of the effects of chelerythrine on Ustilaginoidea virens, J Pestic Sci. (2024). doi: 10.1584/jpestics.d23-065. [Google Scholar]
- Y. Xie, X. Nie, C. Wang, X. Xu, and F. Zhang, A metabolomics approach for monitoring thermal processing temperature of bovine milk using ultra-performance liquid chromatography tandem Q-Exactive mass spectrometry and multivariate data analysis, Journal of Future Foods, 4, 83–90 (2024). doi: 10.1016/j.jfutfo.2023.05.005. [CrossRef] [Google Scholar]
- V. García-Cañas, C. Simó, M. Herrero, E. Ibáñez, and A. Cifuentes, Present and future challenges in food analysis: Foodomics, Anal Chem, 84, 10150–10159 (2012). doi: 10.1021/ac301680q. [CrossRef] [PubMed] [Google Scholar]
- A. L. Barabási, G. Menichetti, and J. Loscalzo, Publisher Correction: The unmapped chemical complexity of our diet, Nature Food, 1, 33–37 (2020). doi: 10.1038/s43016019-0005-1),” Feb. 01, 2020, Springer Nature. doi: 10.1038/s43016-020-0030-0. [Google Scholar]
- J. Keijer et al., Omics biomarkers and an approach for their practical implementation to delineate health status for personalized nutrition strategies, Taylor and Francis Ltd. (2023). doi: 10.1080/10408398.2023.2198605. [Google Scholar]
- S. Li, N. Looby, V. Chandran, and V. Kulasingam, Challenges in the MetabolomicsBased Biomarker Validation Pipeline, Multidisciplinary Digital Publishing Institute (MDPI). (2024). doi: 10.3390/metabo14040200. [Google Scholar]
- S. Herráiz-Gil, M. del Carmen de Arriba, M. J. Escámez, and C. León, Multi-omic data integration in food science and analysis, Elsevier Ltd. (2023). doi: 10.1016/j.cofs.2023.101049. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.