Open Access
Issue |
BIO Web Conf.
Volume 136, 2024
The 13th International and National Seminar of Fisheries and Marine Science (ISFM XIII 2024)
|
|
---|---|---|
Article Number | 02008 | |
Number of page(s) | 12 | |
Section | Fisheries Product Technology | |
DOI | https://doi.org/10.1051/bioconf/202413602008 | |
Published online | 11 November 2024 |
- S.S. Matthew-Steiner, S. Roy, and C.K. Sen, Collagen in wound healing. Bioengineering Bioeng., 85, 63 (2021), https://doi.org/10.3390/bioengineering8050063 [CrossRef] [Google Scholar]
- H.A. Wallace, B.M. Basehore, and P.M. Zito, Wound healing phases (StatPearls Publishing, Treasure Island, FL, 2024) [Google Scholar]
- M. Rodrigues, N. Kosaric, C.A. Bonham, and G.C. Gurtner, Wound healing: a cellular perspective. Physiol. Rev., 99, 665–706 (2019), https://doi.org/10.1152/physrev.00067.2017 [CrossRef] [PubMed] [Google Scholar]
- D.A. Yeung and N.H. Kelly, The role of collagen-based biomaterials in chronic wound healing and sports medicine applications. Bioeng., 8, 8 (2021), https://doi.org/10.3390/bioengineering8010008 [Google Scholar]
- J. Prohaska and C. Cook, Skin grafting phases (StatPearls Publishing, Treasure Island, FL, 2024) [Google Scholar]
- A. Elseth and O. Nunez Lopez, Wound grafts (StatPearls Publishing, Treasure Island, FL, 2024) [Google Scholar]
- P. Whitaker and P. Garcia, Brazilian doctors use fish skin to treat burn victims, in Reuters, 26 May 2017, (2017), https://www.reuters.com/article/world/wider-image-brazilian-doctors-use-fish-skin-to-treat-burn-victims-idUSKBN18M1R7/ [Google Scholar]
- A. Ibrahim, M. Soliman, S. Kotb, and M.M. Ali, Evaluation of fish skin as a biological dressing for metacarpal wounds in donkeys. BMC Vet. Res., 16, 472 (2020), https://doi.org/10.1186/s12917-020-02693-w [CrossRef] [Google Scholar]
- E.M. Lima-Junior, M.O. de Moraes Filho, B.A. Costa, F.V. Fechine, M.E.A. de Moraes, F.R. Silva-Junior, M.F.A. do Nascimento Soares, M.B.S. Rocha, and C.M.P. Leontsinis, Innovative treatment using tilapia skin as a xenograft for partial thickness burns after a gunpowder explosion. Journal of Surgical Case Reports. J. Surg. Case Rep., 6, (2019), https://doi.org/10.1093/jscr/rjz181 [Google Scholar]
- C. Choi, T. Linder, A. Kirby, W. Rosenkrantz, and M. Mueller, Use of a tilapia skin xenograft for management of a large bite wound in a dog. Can. Vet. J., 62, 1071–1076 (2021) [Google Scholar]
- R. Guerrero III, Commercially caught freshwater fishes in the Philippines: status, issues, and recommendations. Transactions NAST PHL., 44, 1–15 (2023), https://doi.org/10.57043/transnastphl.2022.2568 [CrossRef] [Google Scholar]
- N. Vigneshwaran, R.P. Nachane, R.H. Balasubramanya, and P.V. Varadarajan, A novel one-pot “green” synthesis of stable silver nanoparticles using soluble starch. Carbohydr. Res., 341, 2012–2018 (2006), https://doi.org/10.1016/j.carres.2006.04.042 [CrossRef] [Google Scholar]
- A. Ibrahim, D. Hassan, N. Kelany, S. Kotb, and M. Soliman, Validation of three different sterilization methods of tilapia skin dressing: impact on microbiological enumeration and collagen Ccntent. Front. Vet. Sci., 7, (2020), https://doi.org/10.3389/fvets.2020.597751 [Google Scholar]
- Y. Qing, L. Cheng, R. Li, G. Liu, Y. Zhang, X. Tang, J. Wang, H. Liu, and Y. Qin, Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int. J. Nanomedicine, 13, 3311–3327 (2018), https://doi.org/10.2147/ijn.s165125 [CrossRef] [Google Scholar]
- R. Zhao, M. Lv, Y. Li, M. Sun, W. Kong, L. Wang, S. Song, C. Fan, L. Jia, S. Qiu, Y. Sun, H. Song, and R. Hao, Stable nanocomposite based on PEGylated and silver nanoparticles loaded graphene oxide for long-term antibacterial activity. ACS Appl. Mater. Interfaces, 9, 15328–15341 (2017), https://doi.org/10.1021/acsami.7b03987 [CrossRef] [PubMed] [Google Scholar]
- P. Siritongsuk, N. Hongsing, S. Thammawithan, S. Daduang, S. Klaynongsruang, A. Tuanyok, and R. Patramanon, Two-phase bactericidal mechanism of silver nanoparticles against Burkholderia pseudomallei. PLOS One., 11, e0168098–e0168098 (2016), https://doi.org/10.1371/journal.pone.0168098 [CrossRef] [Google Scholar]
- T.C. Dakal. A. Kumar, R.S. Majumdar, and V. Yadav, Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol., 7, (2016), https://doi.org/10.3389/fmicb.2016.01831 [Google Scholar]
- S. Rangarajan, S. Verekar, S.K. Deshmukh, J.R. Bellare, A. Balakrishnan, S. Sharma, R. Vidya, and G. Chimóte, Evaluation of anti-bacterial activity of silver nanoparticles synthesized by coprophilous fungus PM0651419. IET Nanobiotechnol., 12, 106–115 (2017), https://doi.org/10.1049/iet-nbt.2017.0037 [Google Scholar]
- A.A. El-Kheshen and S. Gad-Elrab, Effect of reducing and protecting agents on size of silver nanoparticles and their anti-bacterial activity. Der Pharma Chemica., 4, 53–65 (2012) [Google Scholar]
- T. Bruna, F. Maldonado-Bravo, P. Jara, and N. Caro, Silver nanoparticles and their antibacterial applications. Int. J. Mol. Sci., 22, 7202 (2021), https://doi.org/10.3390/ijms22137202 [CrossRef] [Google Scholar]
- M. Seong and D.H. Lee, Silver nanoparticles against Salmonella enterica Ssrotype Typhimurium: role of inner membrane dysfunction. Current Microbiology. Curr. Microbiol., 74, 661–670 (2017), https://doi.org/10.1007/s00284-017-1235-9 [CrossRef] [PubMed] [Google Scholar]
- A. Ivask, A. El-Badawy, C. Kaweeteerawat, D. Boren, H. Fischer, Z. Ji, C.H. Chang. R. Liu, T. Tolaymat, D. Telesca, J.I. Zink, Y. Cohen, P.A. Holden, and H.A. Godwin, Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano., 8, 374–386 (2014), https://doi.org/10.1021/nn4044047 [CrossRef] [PubMed] [Google Scholar]
- A.M. Elshahawy, G.A.-E. Mahmoufd D.M. Mokhtar, and A. Ibrahim, The optimal concentration of silver nanoparticles in sterilizing fish skin grafts. Sci. Rep., 12, 19483 (2022), https://doi.org/10.1038/s41598-022-23853-y [CrossRef] [Google Scholar]
- S.J. Cameron, F. Hosseinian, and W.G. Willmore, A current overview of the biological and cellular effects of nanosilver. Int. J. Mol. Sci., 19, 2030 (2018), https://doi.org/10.3390/ijms19072030 [CrossRef] [Google Scholar]
- C.P. Gong, S.C. Li, and R.Y. Wang, J., Development of biosynthesized silver nanoparticles-based formulation for treating wounds during nursing care in hospitals. Photochem. Photobiol. B., 183, 137–141 (2018), https://doi.org/10.1016/j.jphotobiol.2018.04.030 [CrossRef] [Google Scholar]
- X. Liu, P. Lee, C. Ho, C.H. Lui Vincent, Y. Chen, C. Che, K.H. Tam Paul, and K.Y. Wong Kenneth, Silver nanoparticles mediate differential responses in keratinocytes and fibroblasts during skin wound healing. ChemMedChem., 5, 468–475 (2010), https://doi.org/10.1002/cmdc.200900502 [CrossRef] [PubMed] [Google Scholar]
- G. Nam, S. Rangasamy, B. Purushothaman, and J.M. Song, The application of bactericidal silver nanoparticles in wound treatment. Nanomaterials and Nanotechnology., 5, (2015), https://doi.org/10.5772/60918 [Google Scholar]
- Y.H. Lin, W.S. Hsu, W.Y. Chung, T.H. Ko, and J.H. Lin, Evaluation of various silver- containing dressing on infected excision wound healing study. J. Mater. Sci. Mater. Med., 25, 1375–1386 (2014), https://doi.org/10.1007/s10856-014-5152-1 [CrossRef] [PubMed] [Google Scholar]
- M.E. Martin, D.K. Reeaves, B. Jeffcoat, J.R. Enders, L.M. Costantini, S.T. Yeveodu, D. Botta, T.J. Kavanagh, and J.M. Fleming, Silver nanoparticles alter epithelial basement membrane integrity, cell adhesion molecule expression, and TGF-ß1 secretion. Nanomedicine., 21, 102070 (2019), https://doi.org/10.1016/j.nano.2019.102070 [CrossRef] [Google Scholar]
- H. Toyokawa, Y. Matsui, J. Uhara, H. Tsuchiya, S. Teshima, H. Nakanishi, A.-H. Kwon, Y. Azuma, T. Nagaoka, T. Ogawa, and Y. Kamiyama, Promotive effects of far-infrared ray on full-thickness skin wound healing in rats. Exp. Biol. Med., 228, 724–729 (2003), https://doi.org/10.1177/153537020322800612 [CrossRef] [PubMed] [Google Scholar]
- E. Izak-Nau, A. Huk, B. Reidy, H. Uggerud, M. Vadset, S. Eiden, M. Voetz, M. Himly, A. Duschl, M. Dusinska, and I. Lynch, Impact of storage conditions and storage time on silver nanoparticles’ physicochemical properties and implications for their biological effects. RSC Adv., 5, 84172–842185 (2015), https://doi.org/10.1039/c5ra10187e [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.