Open Access
Issue
BIO Web Conf.
Volume 141, 2024
IX International Scientific Conference on Agricultural Science 2024 “Current State, Problems and Prospects for the Development of Agricultural Science” (AGRICULTURAL SCIENCE 2024)
Article Number 01004
Number of page(s) 10
Section Plant Genetics and Breeding
DOI https://doi.org/10.1051/bioconf/202414101004
Published online 21 November 2024
  • A.V. Pashtetskaia, N.N. Bakova, O.A. Pekhova. Bulletin of the State Nikitsky Botanical Gardens. No. 147. pp. 72-82. DOI 10.25684/0513-1634-2023-147-72-82. (2023). [Google Scholar]
  • A.E. Paliy, I.N. Paliy, O.V. Startseva. Comparative study of phenolic compounds of leaves and fruits of Olea europaea L. Chemistry of vegetable raw materials. No. 2. pp. 141-148. (2020). [CrossRef] [Google Scholar]
  • A.E. Paliy, I.N. Paliy, I.A. Fedotova, E.A. Melkozerova, S.Yu. Tsyupka, O.A. Grebennikova. Dynamics of phenolic compounds in European olive leaves during the cold period on the Southern Coast of the Crimea. Bulletin of the State Nikitsky Botanical Gardens. No. 133. pp. 51-56. (2019). [CrossRef] [Google Scholar]
  • O. Benavente-Garcia, J. Castillo, J. Lorente, A. Ortuno, J.A. Del Rio. Food Chemistry 68(4). pp. 457-462. doi: 10.1016/S0308-8146(99)00221-6. (2000). [CrossRef] [Google Scholar]
  • C.V. Cavalheiro, V.D. Rosso, E.P.Al.J. Cichoski, R. Wagner, C.R. de Menezes, J.S. Barin Chemical composition of olive leaves (Olea europaea L.) from the region of Cacapava do Sul, RS, Brazil. Ciência Rural. Vol. 44(10). pp. 1874-1879. DOI: 10.1590/0103-8478cr20131139 (2014). [CrossRef] [Google Scholar]
  • S.N. El, S. Karakaya Olive tree (Olea europaea) leaves: potential beneficial effects on human health. Nutrition Reviews. Vol. 67(11). pp.632-638. doi:10.1111/j.1753-4887.2009.00248.x. (2009). [CrossRef] [Google Scholar]
  • A. Guinda, T. Albi, M.C.P. Camino, A. Lanzón Eur J Lipid Sci Technol. Vol. 106. P. 22-26. https://doi.org/10.1002/ejlt.200300769 (2004). [CrossRef] [Google Scholar]
  • E. Tsiplakou, G. Zervas The effect of dietary inclusion of olive tree leaves and grape marc on the content of conjugated linoleic acid and vaccenic acid in the milk of dairy sheep and goats. Journal of Dairy Research. Vol. 75. pp. 270-278. DOI: 10.1017/S0022029908003270. (2013). [Google Scholar]
  • F. Brahmi, G. Flamini, M. Issaoui, M. Dhibi, S. Dabbou, M. Mastouri, M. Hammami. Chemical composition and biological activities of volatile fractions from three Tunisian cultivars of olive leaves. Med Chem Res. Vol. 21. pp. 2863-2872. https://doi.org/10.1007/s00044-011-9817-8 (2012). [CrossRef] [Google Scholar]
  • A. Boss, K.S. Bishop, G. Marlow, M.P. Barnett, L.R. Ferguson. Nutrients. 8(8). pp. 513. (2016). [CrossRef] [PubMed] [Google Scholar]
  • D.F. Hildebrand, G.C. Brown, D.M. Jackson, T.R. Hamilton-Kemp Effects of some leaf-emitted volatile compounds on aphid population increase. J Chem Ecol. Vol. 19. P. 1875-1887. DOI: https://doi.org/10.1007/BF00983793 (1993). [CrossRef] [PubMed] [Google Scholar]
  • J. Wang, J. Zhao, H. Liu, L. Zhou, Z. Liu, J. Wang, J. Han, Z. Yu, F. Yang Chemical analysis and biological activity of the essential oils of two valerianaceous species from China: Nardostachys chinensis and Valerianaofficinalis. Molecules. Vol. 15. pp. 6411-6422. (2010). [CrossRef] [Google Scholar]
  • A.V. Pashtetskaia, N. N. Bakova The role of products from olive leaves (Olea europaea L.) in the prevention and treatment of diseases: a review. Tea in historical, cultural and medical aspects: Materials of the III scientific and theoretical conference with international participation, Kursk, December 15, 2022 / Comp. T.A. Sukovatykh, ed. by A.V. Danilova. Kursk: Kursk State Medical University. pp. 360-379. (2022). [Google Scholar]
  • F. Franconi, R. Coinu, S. Carta, P.P. Urgeghe, F. Ieri, N. Mulinacci, A. Romani. J Agric Food Chem. 54(8). pp. 3121-3125. doi: 10.1021/jf053003+. (2006) [CrossRef] [PubMed] [Google Scholar]
  • K. Hansen, A. Adsersen, B.S. Christensen, S. Brooegger, J.S. Rosendal, U. Nyman, U. Wagner Smitt Isolation of an angiotensin converting enzyme (ACE) inhibitor from Olea europaea and Olea lancea. Phytomedicine. Vol. 2. P. 319-332. DOI: https://doi.org/10.1016/S0944-7113(96)80076-6 (1996). [CrossRef] [PubMed] [Google Scholar]
  • K. Kiritsakis, M.G. Kontominas, C. Kontogiorgis, D. Hadjipavlou-Litina, Moustakas A., Kiritsakis A. J. of the American Oil Chemists Society. Vol. 87. p. 369. (2010). [CrossRef] [Google Scholar]
  • C. Antoniou, J. Hull. The Anti-cancer effect of Olea europaea L. Products: A review. Curr Nutr Rep. Vol. 10. P. 99-124. https://doi.org/10.1007/s13668-021-00350-8 (2021). [CrossRef] [Google Scholar]
  • M. Gonzalez, A. Zarzuelo, M.J. Gamez, M.P. Utrilla, J. Jimenez, I. Osuna Hypoglycemic activity of olive leaf. Planta Med. 58. pp. 513-515. DOI: 10.1055/s- 2006-961538 (1992). [CrossRef] [PubMed] [Google Scholar]
  • Tlili, Ahlem & Bouziane, Mebarka & Flamini, Guido & Hadj Mahammed, Mahfoud Volatiles // Records of Natural Products.16. pp. 34-45. DOI: 10.25135/rnp.249.21.02.1989. (2022). [Google Scholar]
  • E. Campeol, G. Flamini, S. Chericoni, S. Catalano, R. Cremonini Agric Food Chem. 49(11). pp. 5409-5411. doi:10.1021/jf010455n (2001). [CrossRef] [PubMed] [Google Scholar]
  • R. Malheiro, S. Casal, S.C. Cunha, P. Baptista, J.A. Pereira Identification of leaf volatiles from olive (Olea europaea) and their possible role in the ovipositional preferences of olive fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae). Phytochemistry. Vol. 121. pp. 11-19. DOI: doi.org/10.1016/j.phytochem.2015.10.005 (2016). [CrossRef] [PubMed] [Google Scholar]
  • A. Dursun, Z. Güler, D. Özkan, D. Bozdoğan International Journal of Secondary Metabolite. Vol. 4(3). pp. 195-204. https://doi.org/10.21448/ijsm.370128 (2017). [CrossRef] [Google Scholar]
  • Y. Zhang, M. Wen, P. Zhou, M. Tian, J. Zhou, L. Zhang Analysis of chemical composition in Chinese olive leaf tea by UHPLC-DAD-Q-TOF-MS/MS and GC-MS and its lipid-lowering effects on the obese mice induced by high-fat diet. Food Research International. Vol. 128. P. 108785. DOI: 10.1016/j.foodres.2019.108785 (2020). [CrossRef] [Google Scholar]
  • M. Popović,; M. Jukić Špika,; M. Veršić Bratinčević,; T. Ninčević,; A. Matešković,; M. Mandušić,; J. Rošin,; M. Nazlić,; V. Dunkić,; E. Vitanović, Essential Oil Volatile Fingerprint Differentiates Croatian cv. Oblica from Other Olea europaea L. Cultivars. Molecules. Vol. 26. pp. 3533. DOI: doi.org/10.3390/molecules26123533 (2021). [CrossRef] [PubMed] [Google Scholar]
  • E. Haloui, Z. Marzouk, B. Marzouk, I. Bouftira, A. Bouraoui, N. Fenina.. Journal of Food Agriculture & Environment. Vol. 8. pp. 204-208. (2010). [Google Scholar]
  • T. Yangui, H. Chakroun, A. Dhouib, & M. Bouaziz (2021). Biological Properties and Chemical Composition of Essential Oils from Fresh and Shade Dried Olive Leaves of Olea europaea L. Chemlali Cultivar. Journal of Essential Oil Bearing Plants. Vol. 24(6). P. 1389-1401. DOI: doi.org/10.1080/0972060X.2022.2026254 (2021). [CrossRef] [Google Scholar]
  • N. Vural, M.A. Akay Chemical compounds, antioxidant properties and antimicrobial activity of olive leaves derived volatile oil in West Anatolia. Journal of the Turkish Chemical Society Section A: Chemistry. Vol. 8. DOI: 10.18596/jotcsa.833139 (2021). [Google Scholar]
  • G Flamini, PL Cioni, I. Morelli Volatiles from leaves, fruits, and virgin oil from Olea europaea cv. Olivastra Seggianese from Italy. J Agric Food Chem. Vol. 51(5). pp. 1382-1386. doi:10.1021/jf020854y (2003). [CrossRef] [PubMed] [Google Scholar]
  • Yu.V. Plugatar, S.P. Korsakova, O.A. Ilnitsky Environmental monitoring of the Southern Coast of the Crimea. Simferopol: PH “ARIAL”. 164 p. (2015). [Google Scholar]
  • O.G. Belous, A.V. Pashtetskaia, N.B. Platonova The content of some biologically active substances in the leaves of Olea europaea L. Bulletin of the SNBG. No.147. pp. 49-56. https://doi.org/10.25684/0513-1634-2023-147-49-56 (2023). [Google Scholar]
  • A.G. Wittenberg, B.V.Ioffe, V.N. Borisov. The use of liquid-vapor equilibrium for gas chromatographic determination of trace impurities (review). Journal of Analytical Chemistry. Vol. 29. No. 9. pp. 1795-1804 (1974). [Google Scholar]
  • A.G. Wittenberg. Equilibrium model in the description of gas extraction and vapor phase analysis. Journal of Analytical Chemistry. Vol. 58. No. 1. pp. 6-21. (2003). [Google Scholar]
  • S. Kumar, R. Ahmad, S. Saeed, M. Azeem, R. Mozūraitis, A.-K. Borg-Karlson, Zhu G. Front. Plant Sci. Vol. 13. P. 820644. DOI: 10.3389/fpls.2022.820644 (2022). [CrossRef] [Google Scholar]
  • V.A. Sholokhova Catalog of promising cultivars and forms of olives from the collection of the State Nikitsky Botanical Gardens. Yalta. 35 p. (1973). [Google Scholar]
  • V.N. Bekhterev Method of extraction of organic substances from aqueous media by extraction freezing in the field of centrifugal forces. RF Patent for invention No. 2564999. registered 11.09.2015. publ. 10.10.15. bull. No. 28. priority 04/14/2014. [Google Scholar]
  • GOST 31665-2012 Vegetable oils and animal fats. Production of methyl esters of fatty acids. [Google Scholar]
  • V.N. Bekhterev. Extraction freezing of monobasic carboxylic acids from water into acetonitrile under the action of centrifugal forces. Journal of Physics. chemistry. Vol. 90. No. 10. pp. 1558. (2016). [Google Scholar]
  • V.N. Bekhterev, V.I. Malyarovskaya. Rapid HPLC method of scopoletine determination in Weigela leaves based on one-step sample preparation by extractive freezing-out. Mendeleev Communications. Vol. 29. pp. 592-594. (2019). [CrossRef] [Google Scholar]
  • GOST 30623-2018 Vegetable oils and products with a mixed composition of the fat phase. The method of detecting falsification. [Google Scholar]
  • M. Rod Chemistry and quality of olive oil. PRIMEFACT. Vol. 227. 4 p. (2006). [Google Scholar]
  • J. Cao, X. Jiang, Q. Chen, H. Zhang, H. Sun, W.M. Zhang, C. Li Oxidative stabilities of olive and camellia oils: Possible mechanism of aldehydes formation in oleic acid triglyceride at high temperature. LWT. Vol. 118. pp. 108858. https://doi.org/10.1016/j.lwt.2019.108858 (2020). [CrossRef] [Google Scholar]
  • E.N. Frankel Volatile lipid oxidation products. Progress in lipid research. Vol. 22(1). pp. 1-33. DOI: 10.1016/0163-7827(83)90002-4 (1983). [CrossRef] [PubMed] [Google Scholar]
  • D.A. Konovalov Natural polyacetylene compounds. Pharmacy and pharmacology. Vol. 2. No.4 (5). pp. 23-47. (2014). [Google Scholar]
  • L.P. Christensen, H.B. Jakobsen Polyacetylenes: Distribution in higher plants, pharmacological effects and analysis. Chromatographic Science Series. Vol. 99. pp. 757-816. (2008). [Google Scholar]
  • R.E. Minto, B.J. Blacklock Biosynthesis and Function of Polyacetylenes and Allied Natural Products. Prog. Lipid Res. Vol. 47(4). pp. 233-306. (2008). [CrossRef] [Google Scholar]
  • D.A. Konovalov, V.N. Orobinskaya. Polyacetylene compounds as a factor of chemical ecology of medicinal plants. International journal of experimental education. No.11. P. 180-185. (2013). [Google Scholar]
  • W.S.U. Roland, L. Pouvreau, J. Curran, F. van de Velde, P.M.T. de Kok Flavor aspects of pulse ingredients. Cereal Chemistry. Vol. 94(1). pp. 58-65. DOI: doi:10.1094/CCHEM-06-16-0161-FI. (2016). [Google Scholar]
  • R.T. Bush, F.A. McInerney. Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy. Geochimica et Cosmochimica Acta . Vol. 117. P. 161-179. https://doi.org/10.1016/j.gca.2013.04.016. (2013). [CrossRef] [Google Scholar]
  • J. Vioque, J. Pastor, E. Vioque Leaf wax alkanes in the genus Coincya. Phytochemistry. Vol. 36(2). pp. 349-352. (1994). [CrossRef] [Google Scholar]
  • N.O. Khromykh, Y.V. Lykholat, A.A. Anishchenko, O.O. Didur, A.A. Gaponov, A.M. Kabar, T.Y. Lykholat Biosystems Diversity. Vol. 28(4). pp. 370-375. (2020). [CrossRef] [Google Scholar]
  • B.J. Tipple, M.A. Berke, C.E. Doman, S. Khachaturyan, J.R. Ehleringer. Proceedings of the National Academy of Sciences. Vol. 110(7). pp. 2659-2664. DOI: https://doi.org/10.1073/pnas.1213875110 (2013). [CrossRef] [PubMed] [Google Scholar]
  • J.P. Mattheis, D.A. Buchahan, J.K. Fellman Phytochemistry. V. 31(3). pp. 771-777. (1992). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.