Open Access
Issue
BIO Web Conf.
Volume 146, 2024
2nd Biology Trunojoyo Madura International Conference (BTMIC 2024)
Article Number 01044
Number of page(s) 7
Section Dense Matter
DOI https://doi.org/10.1051/bioconf/202414601044
Published online 27 November 2024
  • Z. Benattouche, A. Bouchadi, A. Hariri, and M. Benchora, Effect of Thermal Pasteurization on Phytochemical Characteristics and Nature et Technologie Effect of Thermal Pasteurization on Phytochemical Characteristics and Antioxidant Capacity of Orange Juice, J. Nat. Technol., 12, 2, 50–53, (2020) [Google Scholar]
  • V. Chiozzi, S. Agriopoulou, and T. Varzakas, Advances, Applications, and Comparison of Thermal (Pasteurization, Sterilization, and Aseptic Packaging) Against Non-Thermal (Ultrasounds, UV Radiation, Ozonation, High Hydrostatic Pressure) Technologies in Food Processing, Appl. Sci., (2022), doi: 10.3390/app12042202 [Google Scholar]
  • S. Maslehat and E. Mostafavi, The History of Milk Pasteurization in Iran and the Role of Pasteur Institute in Its improvement, J. Med. Microbiol. Infect. Dis., 6, 4, 87–90, (2018), doi: 10.29252/jommid.6.4.87 [Google Scholar]
  • J. R. Stabel, S. Hurd, L. Calvente, and R. F. Rosenbusch, Destruction of Mycobacterium paratuberculosis, Salmonella spp., and Mycoplasma spp. in raw milk by a commercial on-farm high-temperature, short-time pasteurizer, J. Dairy Sci., 87, 7, 2177–2183, (2004), doi: 10.3168/jds.S0022-0302(04)70038-7 [CrossRef] [Google Scholar]
  • E. N. Nawangsih, I. I. Rahmat, L. S. Halimah, and D. N. Hidayat, The Best Pasteurization Method in Reducing the Amount of Bacteria in Cow’s Milk on People Dairy Farm, J. Phys. Conf. Ser., 1764, 1, (2021), doi: 10.1088/1742-6596/1764/1/012011 [CrossRef] [Google Scholar]
  • D. Bermudez-Aguirre and B. A. Niemira, A review on egg pasteurization and disinfection: Traditional and novel processing technologies, Compr. Rev. Food Sci. Food Saf., 22, 2, 756–784, (2023), doi: 10.1111/1541-4337.13088 [CrossRef] [Google Scholar]
  • S. Y. Binte Abu Bakar, M. Salim, A. J. Clulow, K. R. Nicholas, and B. J. Boyd, Human milk composition and the effects of pasteurisation on the activity of its components, Trends Food Sci. Technol., 111, December 2020, 166–174, (2021), doi: 10.1016/j.tifs.2021.02.055 [CrossRef] [Google Scholar]
  • S. Liu, H. Xiong, Y. Qiu, J. Dai, Q. Zhang, and W. Qin, of onion powder, 170, July, (2022) [Google Scholar]
  • Y. Li, X. Jia, Z. Wang, Z. He, M. Zeng, and J. Chen, Changes in harmful Maillard reaction products in low-temperature long-time pasteurization-treated milks reconstituted from whole-milk powders after different storage times,” J. Food Compos. Anal., 106, August 2021, 104280, (2022), doi: 10.1016/j.jfca.2021.104280 [CrossRef] [Google Scholar]
  • Y. Xie, X. Nie, C. Wang, X. Xu, and F. Zhang, A metabolomics approach for monitoring thermal processing temperature of bovine milk using ultra-performance liquid chromatography tandem Q-Exactive mass spectrometry and multivariate data analysis, J. Futur. Foods, 4, 1, 83–90, (2024), doi: 10.1016/j.jfutfo.2023.05.005 [CrossRef] [Google Scholar]
  • B. Basumatary, P. K. Nayak, C. M. Chandrasekar, A. Nath, M. Nayak, and R. K. Kesavan, Impact of thermo sonication and pasteurization on the physicochemical, microbiological and anti-oxidant properties of pomelo (Citrus maxima) juice, Int. J. Fruit Sci., 20, sup3, S2056–S2073, (2020), doi: 10.1080/15538362.2020.1848751 [CrossRef] [Google Scholar]
  • O. A. Mihalache et al., Pasteurised eggs - A food safety solution against Salmonella backed by sensorial analysis of dishes traditionally containing raw or undercooked eggs, Int. J. Gastron. Food Sci., 28, January, (2022), doi: 10.1016/j.ijgfs.2022.100547 [CrossRef] [Google Scholar]
  • L. O’Sullivan, D. Bolton, O. McAuliffe, and A. Coffey, The use of bacteriophages to control and detect pathogens in the dairy industry, Int. J. Dairy Technol., 73, 1, 1–11, (2020), doi: 10.1111/14710307.12641 [CrossRef] [Google Scholar]
  • M. Ziyaina, B. Rasco, and S. S. Sablani, Rapid methods of microbial detection in dairy products, Food Control, 110, October 2019, (2020), doi: 10.1016/j.foodcont.2019.107008 [Google Scholar]
  • H. M. Hernández-Hernández, L. Moreno-Vilet, and S. J. Villanueva-Rodríguez, Current status of emerging food processing technologies in Latin America: Novel non-thermal processing, Innov. Food Sci. Emerg. Technol., 58, 102233, (2019), doi: 10.1016/j.ifset.2019.102233 [CrossRef] [Google Scholar]
  • P. J. Fellows, Food Processing Technology Principles and Practice, in Food Processing Technology, 5th ed. Woodhead Publishing, 2022, pp. i–iii. doi: 10.1016/b978-0-323-85737-6.00034-0 [Google Scholar]
  • S. L. Hillegas and A. Demirci, Inactivation of Clostridium sporogenes in Clover Honey by Pulsed UV-light Treatment, Agric. Eng. Int., 5, December 2003, 1–7, (2013), doi: 10.13031/2013.14232 [Google Scholar]
  • J. A. Guerrero-Beltrán and G. V. Barbosa-Cánovas, Review: Advantages and limitations on processing foods by UV light, Food Sci. Technol. Int., 10, 3, 137–147, (2004), doi: 10.1177/1082013204044359 [CrossRef] [Google Scholar]
  • M. A. Shabbir et al., Effect of non-thermal processing techniques on pathogenic and spoilage microorganisms of milk and milk products, Food Sci. Technol., 41, 2, 279–294, (2021), doi: 10.1590/fst.05820 [CrossRef] [Google Scholar]
  • W. J. Masschelein and R. W. Rice, Ultraviolet Light in Water and Wastewater Sanitation. Boca Raton: Lewis Publishers, (2002). [Google Scholar]
  • A. X. Roig-Sagués, R. Gervilla, S. Pixner, T. Terán-Peñafiel, and M. M. Hernández-Herrero, Bactericidal effect of ultraviolet-C treatments applied to honey, LWT, 89, 566–571, (2018), doi: 10.1016/j.lwt.2017.11.010 [CrossRef] [Google Scholar]
  • S. Cristina, L. T. Marghitas, and Adrian, U Vsterilization of honey, Ananele Univ. Din Oradea Fasc. Ecotoxicologie, Zooteh. Tehnol. Ind. Aliment, 241–244., XIII/B, 241–244, (2014) [Google Scholar]
  • US Food and Drug Administration (USFDA), No Title, (2000) [Google Scholar]
  • M. A. Aboamer et al., Hybrid Radiant Disinfection: Exploring UVC and UVB Sterilization Impact on the Mechanical Characteristics of PLA Materials, Polymers (Basel)., 15, 24, (2023), doi: 10.3390/polym15244658 [Google Scholar]
  • A. C. Lorenzo-Leal, W. Tam, A. Kheyrandish, M. Mohseni, and H. Bach, Antimicrobial Activity of Filtered Far-UVC Light (222 nm) against Different Pathogens, Biomed Res. Int., 2023, (2023), doi: 10.1155/2023/2085140 [Google Scholar]
  • S. Mukhopadhyay and R. Ramaswamy, Application of emerging technologies to control Salmonella in foods: A review, Food Res. Int., 45, 2, 666–677, (2012), doi: https://doi.org/10.1016/j.foodres.2011.05.016 [CrossRef] [Google Scholar]
  • Y. González, G. Gómez, G. E. Moeller-Chávez, and G. Vidal, UV Disinfection Systems for Wastewater Treatment: Emphasis on Reactivation of Microorganisms, Sustain., 15, 14, (2023), doi: 10.3390/su151411262 [Google Scholar]
  • N. N. A. K. Shah, R. Shamsudin, R. A. Rahman, and N. M. Adzahan, Fruit juice production using ultraviolet pasteurization: A review, Beverages, 2, 3, 1–20, (2016), doi: 10.3390/beverages2030022 [CrossRef] [Google Scholar]
  • Q. Xiang, L. Fan, R. Zhang, Y. Ma, S. Liu, and Y. Bai, Effect of UVC light-emitting diodes on apple juice: Inactivation of Zygosaccharomyces rouxii and determination of quality, Food Control, 111, 107082, (2020), doi: https://doi.org/10.1016/j.foodcont.2019.107082 [CrossRef] [Google Scholar]
  • T. Koutchma and B. Parisi, Biodosimetry of Escherichia coli UV Inactivation in Model Juices with Regard to Dose Distribution in Annular UV Reactors, J. Food Sci., 69, 1, (2004), doi: 10.1111/j.1365-2621.2004.tb17862.x [Google Scholar]
  • E. G. Murakami, L. Jackson, K. Madsen, and B. Schickedanz, Factors affecting the ultraviolet inactivation ofEscherichia coli in apple juice and a model system, J. Food Process Eng., 29, 1, 53–71, (2006), doi: 10.1111/j.1745-4530.2006.00049.x [CrossRef] [Google Scholar]
  • A. R. Mansur, H. S. Lee, and C. J. Lee, A Review of the Efficacy of Ultraviolet C Irradiation for Decontamination of Pathogenic and Spoilage Microorganisms in Fruit Juices, J. Microbiol. Biotechnol., 33, 4, 419–429, (2023), doi: 10.4014/jmb.2212.12022 [CrossRef] [PubMed] [Google Scholar]
  • M. Feng, K. Ghafoor, B. Seo, K. Yang, and J. Park, Effects of ultraviolet-C treatment in Teflon®-coil on microbial populations and physico-chemical characteristics of watermelon juice. 133–139, (2013). doi: 10.1016/j.ifset.2013.05.005 [Google Scholar]
  • M. Keyser, I. A. Müller, F. P. Cilliers, W. Nel, and P. A. Gouws, Ultraviolet radiation as a non-thermal treatment for the inactivation of microorganisms in fruit juice, Innov. Food Sci. Emerg. Technol., 9, 3, 348–354, (2008), doi: https://doi.org/10.1016/j.ifset.2007.09.002 [CrossRef] [Google Scholar]
  • R. Shamsudin, N. Mohd Adzahan, Y. Pui Yee, and A. Mansor, Effect of repetitive ultraviolet irradiation on the physico-chemical properties and microbial stability of pineapple juice, Innov. Food Sci. Emerg. Technol., 23, 114–120, (2014), doi: 10.1016/j.ifset.2014.02.005 [CrossRef] [Google Scholar]
  • A. Mansor, R. Shamsudin, N. M. Adzahan, and M. N. Hamidon, Efficacy of Ultraviolet Radiation as Non-thermal Treatment for the Inactivation of Salmonella Typhimurium TISTR 292 in Pineapple Fruit Juice, Agric. Agric. Sci. Procedia, 2, 173–180, (2014), doi: 10.1016/j.aaspro.2014.11.025 [Google Scholar]
  • J. A. Guerrero-Beltrén and G. V Barbosa-Cénovas, Inactivation of Saccharomyces cerevisiae and Polyphenoloxidase in Mango Nectar Treated with UV Light, J. Food Prot., 69, 2, 362–368, (2006), doi: https://doi.org/10.4315/0362-028X-69.2.362 [CrossRef] [Google Scholar]
  • P. M. De Souza, A. Müller, A. Fernández, and M. Stahl, Microbiological efficacy in liquid egg products of a UV-C treatment in a coiled reactor, Innovative Food Science and Emerging Technologies, 21. 90–98, (2014). doi: 10.1016/j.ifset.2013.10.017 [CrossRef] [Google Scholar]
  • S. Unluturk, M. Atilgan, A. Baysal, and C. Tari, Use of UV-C Radiation as a Non-Thermal Process for Liquid Egg Products (LEP), J. Food Eng., (2008), doi: 10.1016/j.jfoodeng.2007.08.017. [Google Scholar]
  • V. Falguera, J. Pagán, and A. Ibarz, Effect of UV irradiation on enzymatic activities and physicochemical properties of apple juices from different varieties, LWT - Food Sci. Technol., 44, 1, 115–119, (2011), doi: https://doi.org/10.1016/j.lwt.2010.05.028 [CrossRef] [Google Scholar]
  • V. M. Gómez-López, T. Koutchma, and K. Linden, Chapter 8 - Ultraviolet and Pulsed Light Processing of Fluid Foods, P. J. Cullen, B. K. Tiwari, and V. P. B. T.-N. T. and N.-T. T. for F. F. Valdramidis, Eds., San Diego: Academic Press, pp. 185–223, (2012). doi: https://doi.org/10.1016/B978-0-12-381470-8.00008-6 [Google Scholar]
  • E. Gayán, S. Condón, and I. Álvarez, Continuous-Flow UV Liquid Food Pasteurization: Engineering Aspects, Food Bioprocess Technol., 7, 10, 2813–2827, (2014), doi: 10.1007/s11947-014-1267-0 [CrossRef] [Google Scholar]
  • T. Koutchma, Advances in Ultraviolet Light Technology for Non-Thermal Processing of Liquid Foods, Food Bioprocess Technol., (2009), doi: 10.1007/s11947-008-0178-3 [Google Scholar]
  • R. Choudhary and S. Bandla, Ultraviolet Pasteurization for Food Industry, Int. J. Food Sci. Nutr. Eng., 2, 1, 12–15, (2012), doi: 10.5923/j.food.20120201.03 [CrossRef] [Google Scholar]
  • J. Pierscianowski, V. Popovic, M. Biancaniello, S. Bissonnette, Y. Zhu, and T. Koutchma, Continuous-flow UV-C processing of kale juice for the inactivation of E. coli and assessment of quality parameters, Food Res. Int., 140, December (2020), 2021, doi: 10.1016/j.foodres.2020.110085 [Google Scholar]
  • A. Menon, V. Stojceska, and S. A. Tassou, A systematic review on the recent advances of the energy efficiency improvements in non-conventional food drying technologies, Trends Food Sci. Technol., 100, 67–76, (2020), doi: https://doi.org/10.1016/j.tifs.2020.03.014 [CrossRef] [Google Scholar]
  • Sunil, N. Chauhan, J. Singh, S. Chandra, V. Chaudhary, and V. Kumar, Non-thermal techniques: Application in food industries’ A review, J. Pharmacogn. Phytochem., 7, 5, 1507–1518, (2018) [Google Scholar]
  • Y. Chen, L. J. Yu, and H. V. Rupasinghe, “Effect of thermal and non-thermal pasteurisation on the microbial inactivation and phenolic degradation in fruit juice: A mini-review,” J. Sci. Food Agric., 93, 5, 981–986, (2013), doi: 10.1002/jsfa.5989 [CrossRef] [PubMed] [Google Scholar]
  • M. Walkling-Ribeiro, F. Noci, D. A. Cronin, J. G. Lyng, and D. J. Morgan, Inactivation of Escherichia coli in a Tropical Fruit Smoothie by a Combination of Heat and Pulsed Electric Fields, 73, 8, 395–399, (2008), doi: 10.1111/j.1750-3841.2008.00927.x [Google Scholar]
  • B. Amine et al., Impact of Thermal and Non-Thermal Pasteurization on the Microbial Inactivation of Fruit Juice: Review,” J Food Microb. 1–11, (2023), doi: 10.35248/2476-2059.23.8.198.Citation [Google Scholar]
  • C. M. A. P. Franz, I. Specht, G. S. Cho, V. Graef, and M. R. Stahl, UV-C-inactivation of microorganisms in naturally cloudy apple juice using novel inactivation equipment based on Dean vortex technology, Food Control, 20, 12, 1103–1107, (2009), doi: 10.1016/j.foodcont.2009.02.010 [CrossRef] [Google Scholar]
  • S. R. Alkhafaji and M. Farid, An investigation on pulsed electric fields technology using new treatment chamber design, 8, 205–212, (2007), doi: 10.1016/j.ifset.2006.11.001 [Google Scholar]
  • V. Heinz, S. Toepfl, and D. Knorr, Impact of temperature on lethality and energy efficiency of apple juice pasteurization by pulsed electric fields treatment, Innov. Food Sci. Emerg. Technol., 4, 2, 167–175, (2003), doi: https://doi.org/10.1016/S1466-8564(03)00017-1 [CrossRef] [Google Scholar]
  • C. Lagnika et al., Effect of Combining Ultrasound and Mild Heat Treatment on Physicochemical, Nutritional Quality and Microbiological Properties of Pineapple Juice, Food Nutr. Sci., (2017), doi: 10.4236/fns.2017.82015 [Google Scholar]
  • P. Chen, S. Deng, Y. Cheng, X. Lin, L. Metzger, and R. Ruan, 1 - Non-thermal food pasteurization processes: an introduction, in Woodhead Publishing Series in Food Science, Technology and Nutrition, C. J. Doona, K. Kustin, and F. E. B. T.-C. S. in N. F. P. T. Feeherry, Eds., Woodhead Publishing, 1–18, (2010), doi: https://doi.org/10.1533/9780857090713.1 [Google Scholar]
  • J. Mosqueda-Melgar, R. M. Raybaudi-Massilia, and O. Martin-Belloso, Non-thermalpasteurization of fruit juices by combining high-intensity pulsed electric fields with natural antimicrobials, Innov. Food Sci. Emerg. Technol., 9, 3, 328–340, (2008), doi: https://doi.org/10.1016/j.ifset.2007.09.003 [CrossRef] [Google Scholar]
  • B. Hosseinzadeh Samani, A. Behruzian, M. H. Khoshtaghaza, M. Behruzian, and A. Ansari Ardali, The investigation and optimization of two combined pasteurization methods of ultrasonic-pulse electric field and hydrodynamic-pulse electric field on sour cherry juice using RSM-TOPSIS, J. Food Process. Preserv., 44, 9, e14700, (2020), doi: https://doi.org/10.1111/jfpp.14700. [CrossRef] [Google Scholar]
  • A. Zulueta, F. J. Barba, M. J. Esteve, and A. Frigola, Changes in Quality and Nutritional Parameters During Refrigerated Storage of an Orange Juice-Milk Beverage Treated by Equivalent Thermal and Non-thermal Processes for Mild Pasteurization, Food Bioprocess Technol., 6, 8, 2018–2030, (2013), doi: 10.1007/s11947-012-0858-x [CrossRef] [Google Scholar]
  • S. Mangalassary, I. Han, J. Rieck, J. Acton, and P. Dawson, Effect of combining nisin and/or lysozyme with in-package pasteurization for control of Listeria monocytogenes in ready-to-eat turkey bologna during refrigerated storage, Food Microbiol., 25, 7, 866–870, (2008), doi: 10.1016/j.fm.2008.05.002 [CrossRef] [Google Scholar]
  • C. Czank, K. Simmer, and P. E. Hartmann, Simultaneous pasteurization and homogenization of human milk by combining heat and ultrasound: Effect on milk quality, J. Dairy Res., 77, 2, 183–189, (2010), doi: 10.1017/S0022029909990483 [CrossRef] [PubMed] [Google Scholar]
  • K. Smith, G. S. Mittal, and M. W. Griffiths, Pasteurization of Milk Using Pulsed Electrical Field and Antimicrobials, J. Food Sci., 67, 6,. 2304–2308, (2002), doi: https://doi.org/10.1111/j.1365-2621.2002.tb09545.x [CrossRef] [Google Scholar]
  • B. Aaliya et al., Recent trends in bacterial decontamination of food products by hurdle technology: A synergistic approach using thermal and non-thermal processing techniques, Food Res. Int., 147, May, (2021), doi: 10.1016/j.foodres.2021.110514 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.