Open Access
Issue
BIO Web Conf.
Volume 148, 2024
International Conference of Biological, Environment, Agriculture, and Food (ICoBEAF 2024)
Article Number 04005
Number of page(s) 20
Section Food
DOI https://doi.org/10.1051/bioconf/202414804005
Published online 09 January 2025
  • Perrone, A. Giovino, J. Benny, and F. Martinelli, “Advanced glycation end products (AGEs): biochemistry, signaling, analytical methods, and epigenetic effects,” Oxid. Med. Cell. Longev., vol. 2020 (2020). [CrossRef] [Google Scholar]
  • S. Bansal, A. Burman, and A. K. Tripathi, “Advanced glycation end products: Key mediator and therapeutic target of cardiovascular complications in diabetes,” World J. Diabetes, 14(8) (2023). [Google Scholar]
  • W. Rungratanawanich, Y. Qu, X. Wang, M. M. Essa, and B.-J. Song, “Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol- mediated tissue injury,” Exp. Mol. Med., 53(2) (2021). [Google Scholar]
  • Q. Song, J. Liu, L. Dong, X. Wang, and X. Zhang, “Novel advances in inhibiting advanced glycation end product formation using natural compounds,” Biomed. Pharmacother., 140 (2021). [Google Scholar]
  • J. Chen et al., “Advanced glycation end products measured by skin autofluorescence and subclinical cardiovascular disease: the Rotterdam Study,” Cardiovasc. Diabetol., 22(1) (2023). [Google Scholar]
  • T. Hirai et al., “Advanced glycation end products are associated with diabetes status and physical functions in patients with cardiovascular disease,” Nutrients, 14(15) (2022). [Google Scholar]
  • T. Wegener, “Patterns and Trends in the Use of Herbal Products, Herbal Medicine and Herbal Medicinal Products,” Int. J. Complement. Altern. Med., 9(6) (2017). [Google Scholar]
  • A. Shaito et al., “Herbal Medicine for Cardiovascular Diseases: Efficacy, Mechanisms, and Safety,” Front. Pharmacol., 11 (2020). [CrossRef] [Google Scholar]
  • L. Villaescusa, C. Zaragoza, F. Zaragoza, and J. Tamargo, “Herbal medicines for the treatment of cardiovascular diseases: Benefits and risks–A narrative review,” Int. J. Cardiol., 385 (2023). [Google Scholar]
  • E. B. Minarno, “Skrining fitokimia dan kandungan total flavanoid pada buah carica pubescens lenne & k. koch di kawasan Bromo, Cangar, dan dataran tinggi Dieng,” El- Hayah, 5(2) (2015). [Google Scholar]
  • H. Y. Hassen, M. Bowyer, L. Gibson, S. Abrams, and H. Bastiaens, “Level of cardiovascular disease knowledge, risk perception and intention towards healthy lifestyle and socioeconomic disparities among adults in vulnerable communities of Belgium and England,” BMC Public Health, 22(1) (2022). [Google Scholar]
  • M. Kazi et al., “Enhancing oral bioavailability of apigenin using a bioactive self- nanoemulsifying drug delivery system (Bio-SNEDDS): In vitro, in vivo and stability evaluations,” Pharmaceutics, 12(8) (2020). [Google Scholar]
  • S. D. Saoji, N. A. Raut, P. W. Dhore, C. D. Borkar, M. Popielarczyk, and V. S. Dave, “Preparation and evaluation of phospholipid-based complex of standardized centella extract (SCE) for the enhanced delivery of phytoconstituents,” AAPS J., 18 (2016). [Google Scholar]
  • F. Faramayuda, S. Riyanti, A. S. Pratiwi, T. S. Mariani, E. Elfahmi, and S. Sukrasno, “Isolasi Sinensetin dari Kumis Kucing (Orthosiphon aristatus Blume miq.) Varietas Putih,” JPSCR J. Pharm. Sci. Clin. Res., 6(2) (2021). [Google Scholar]
  • T. Gunasekaran, T. Haile, T. Nigusse, and M. D. Dhanaraju, “Nanotechnology: an effective tool for enhancing bioavailability and bioactivity of phytomedicine,” Asian Pac. J. Trop. Biomed., 4 (2014). [Google Scholar]
  • J. C. S. Barrón, C. C. González, E. Á. Parrilla, and L. A. D. la Rosa, “Nanoparticle- Mediated Delivery of Flavonoids: Impact on Proinflammatory Cytokine Production: A Systematic Review,” Biomolecules, 13(7) (2023). [Google Scholar]
  • B. V. Bonifacio, P. B. da Silva, M. A. dos S. Ramos, K. M. S. Negri, T. M. Bauab, and M. Chorilli, “Nanotechnology-based drug delivery systems and herbal medicines: a review,” Int. J. Nanomedicine, 9 (2014). [Google Scholar]
  • M. Hesari et al., “Current advances in the use of nanophytomedicine therapies for human cardiovascular diseases,” Int. J. Nanomedicine, 16 (2021). [Google Scholar]
  • D. Verma, D. Macwan, A. V. Mangrola, S. G. Solanki, H. S. Bariya, and H. V. Patel, “In vitro anti-arthritic and antiglycation potential of a combination of silver nanoparticles and Moringa oleifera leaves extract,” Nanomedicine J., 9(4) (2022). [Google Scholar]
  • S. Anwar et al., “Biosynthesis of silver nanoparticles using Tamarix articulata leaf extract: an effective approach for attenuation of oxidative stress mediated diseases,” Int. J. Food Prop., 24(1) (2021). [Google Scholar]
  • D. Verma, R. Zala, D. Macwan, Y. Vaidya, and H. V. Patel, “Antidiabetic and antiglycation potential of zinc nanoparticles encompassed Gymnema sylvestre R. Br. extract,” J. Phytonanotechnology Pharm. Sci., 2(3) (2022). [Google Scholar]
  • O. K. Awote, A. G. Adeyemo, A. S. Kolawole, K. B. David, and H. Sciences, “Jatropha tanjorensis aqueous extracts synthesized silver nanoparticles possesses antidiabetic , antiglycation , antioxidant and anti-inflammatory Jatropha tanjorensis aqueous extracts synthesized silver nanoparticles possesses antidiabetic , antiglycation,” (2024). [Google Scholar]
  • J. M. Ashraf, M. A. Ansari, H. M. Khan, M. A. Alzohairy, and I. Choi, “Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AGEs formation using biophysical techniques,” Sci. Rep., 6 (2016). [CrossRef] [Google Scholar]
  • H. Jan et al., “Plant-Based Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) Using Aqueous Leaf Extract of Aquilegia pubiflora: Their Antiproliferative Activity against HepG2 Cells Inducing Reactive Oxygen Species and Other in Vitro Properties,” Oxid. Med. Cell. Longev., 2021 (2021). [Google Scholar]
  • K. Manna et al., “Amelioration of diabetic nephropathy using pomegranate peel extract- stabilized gold nanoparticles: Assessment of NF-ΚB and Nrf2 signaling system,” Int. J. Nanomedicine, 14 (2019). [Google Scholar]
  • S. Peron, F. Hadi, F. Azarbani, and H. C. Ananda Murthy, “Antimicrobial, antioxidant, anti-glycation and toxicity studies on silver nanoparticles synthesized using Rosa damascena flower extract,” Green Chem. Lett. Rev., 14(3) (2021). [Google Scholar]
  • M. Sengani and D. Rajeswari, “Gold nanosupplement in selective inhibition of methylglyoxal and key enzymes linked to diabetes,” IET Nanobiotechnology, 11(7) (2017) [Google Scholar]
  • M. I. Alkhalaf, R. H. Hussein, and A. Hamza, “Green synthesis of silver nanoparticles by Nigella sativa extract alleviates diabetic neuropathy through anti-inflammatory and antioxidant effects,” Saudi J. Biol. Sci., 27(9) (2020). [Google Scholar]
  • S. M. Aldossari et al., “Phytosynthesized Iron Oxide Nanoparticles Using Aqueous Extract of Saccharum arundinaceum (Hardy Sugar Cane), Their Characterizations, Antiglycation, and Cytotoxic Activities,” ACS Omega, 8(44) (2023). [Google Scholar]
  • W. Li et al., “Gold nanoparticles synthesized with Poria cocos modulates the anti- obesity parameters in high-fat diet and streptozotocin induced obese diabetes rat model,” Arab. J. Chem., 13(7) (2020). [Google Scholar]
  • S. Abdulmalek, A. Eldala, D. Awad, and M. Balbaa, “Ameliorative effect of curcumin and zinc oxide nanoparticles on multiple mechanisms in obese rats with induced type 2 diabetes,” Sci. Rep., 11(1) (2021) [CrossRef] [Google Scholar]
  • S. S. Nassar, M. A. Sadek, H. M. Ismail, and G. S. E.-D. Moram, “Comparative Study of Native or Nano Quercetin on Epigenetic Modification and Nephropathy Biomarkers Post Challenges in Diabetic Hamsters,” J. Pharm. Res. Int., (2021). [Google Scholar]
  • N. F. Shamsudin et al., “Flavonoids as Antidiabetic and Anti-Inflammatory Agents: A Review on Structural Activity Relationship-Based Studies and Meta-Analysis,” Int. J. Mol. Sci., 23(20) (2022) [Google Scholar]
  • C. K. and T. C. T. Elliott Middleton Jr., “The Effects of Plant Flavonoids on Mammalian Cells:Implications for Inflammation, Heart Disease, and Cancer,” Pharmacol. Rev., 52(4) (2000). [Google Scholar]
  • M. G. K. Prasad Govindrao Jamkhande a, Namrata W. Ghule b, Abdul Haque Bamer c, “Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications,” J. Drug Deliv. Sci. Technol., 53 (2019). [Google Scholar]
  • Z. Alhalili, “Metal Oxides Nanoparticles: General Structural Description, Chemical, Physical, and Biological Synthesis Methods, Role in Pesticides and Heavy Metal Removal through Wastewater Treatment,” Molecules, 28(7) (2023). [Google Scholar]
  • M. G. G. S. N. T. W.P.S.L. Wijesinghe a, M.M.M.G.P.G. Mantilaka a b, K.A.A. Ruparathna b, R.B.S.D. Rajapakshe b, S.A.L. Sameera a, “4 - Filler matrix interfaces of inorganic/biopolymer composites and their applications,” Woodhead Publ. Ser. Compos. Sci. Eng., (2020). [Google Scholar]
  • E. A. E. Mohamed A. Shenashen, Sherif A. El-Safty*, “Synthesis, morphological control, and properties of silver nanoparticles in potential applications,” Part. Part. Syst. Charact., 31(3) (2014). [Google Scholar]
  • X. F. Zhang, Z. G. Liu, W. Shen, and S. Gurunathan, “Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches,” Int. J. Mol. Sci., 17(9) (2016). [Google Scholar]
  • S. Li, S. J. Silvers, and M. S. El-Shall, “Preparation, characterization and optical properties of zinc oxide nanoparticles,” Mater. Res. Soc. Symp. - Proc., 452 (1997). [Google Scholar]
  • H. M. Abdelmigid, N. A. Hussien, A. A. Alyamani, M. M. Morsi, N. M. Alsufyani, and H. A. Kadi, “Green Synthesis of Zinc Oxide Nanoparticles Using Pomegranate Fruit Peel and Solid Coffee Grounds vs. Chemical Method of Synthesis, with Their Biocompatibility and Antibacterial Properties Investigation,” Molecules, 27(4) (2022) [Google Scholar]
  • F. Compostella, O. Pitirollo, A. Silvestri, and L. Polito, “Glyco-gold nanoparticles: Synthesis and applications,” Beilstein J. Org. Chem., 13 (2017). [Google Scholar]
  • I. Khan, K. Saeed, and I. Khan, “Nanoparticles: Properties, applications and toxicities,” Arab. J. Chem., 12(7) (2019). [Google Scholar]
  • J. W. G. Zhuang, Environmental Application and Risks of Nanotechnology: A Balanced View. 2011. [Google Scholar]
  • A. Poznyak, A. V Grechko, P. Poggio, V. A. Myasoedova, V. Alfieri, and A. N. Orekhov, “The Diabetes Mellitus–Atherosclerosis Connection: The Role of Lipid and Glucose Metabolism and Chronic Inflammation,” International Journal of Molecular Sciences, 21(5) (2020). [Google Scholar]
  • A. M. Abd El-Hameed, “Polydatin-loaded chitosan nanoparticles ameliorates early diabetic nephropathy by attenuating oxidative stress and inflammatory responses in streptozotocin-induced diabetic rat,” J. Diabetes Metab. Disord., 19(2) (2020). [Google Scholar]
  • C. Iannuzzi, G. Irace, and I. Sirangelo, “Differential effects of glycation on protein aggregation and amyloid formation,” Front. Mol. Biosci., 1 (2014). [CrossRef] [Google Scholar]
  • N. Ishrat, H. Khan, O. P. S. Patel, A. A. Mahdi, F. Mujeeb, and S. Ahmad, “Role of Glycation in Type 2 Diabetes Mellitus and Its Prevention through Nymphaea Species,” Biomed Res. Int., 2021 (2021). [Google Scholar]
  • S. D. A, * , Aditya Ganeshpurkar a, A. G. B, D. B. C, and N. Dubey, “Glycolytic enzyme inhibitory and antiglycation potential of rutin,” Futur. J. Pharm. Sci., 3(2) (2017). [Google Scholar]
  • R. V. & G. W. Elizabeth Barber, Michael J. Houghton, “Measuring key human carbohydrate digestive enzyme activities using high-performance anion-exchange chromatography with pulsed amperometric detection,” Nat. Protoc., 17 (2022). [Google Scholar]
  • R. M. D. Alfred Ngenge Tamfu a f g, Ndoubalem Roland b, Aristide Munvera Mfifen c, Selcuk Kucukaydin d, Monde Gaye e, Andreea Veronica Botezatu f, Mehmet Emin Duru g, “Phenolic composition, antioxidant and enzyme inhibitory activities of Parkia biglobosa (Jacq.) Benth., Tithonia diversifolia (Hemsl) A. Gray, and Crossopteryx febrifuga (Afzel.) Benth,” Arab. J. Chem., 15(4) (2022). [Google Scholar]
  • R. T. Feunaing et al., “In Vitro Evaluation of α-amylase and α-glucosidase Inhibition of 2,3-Epoxyprocyanidin C1 and Other Constituents from Pterocarpus erinaceus Poir,” Molecules, 28(1) (2023). [Google Scholar]
  • J. H. Chen, X. Lin, C. Bu, and X. Zhang, “Role of advanced glycation end products in mobility and considerations in possible dietary and nutritional intervention strategies,” Nutr. Metab., 15(1) (2018). [Google Scholar]
  • Diering and J. F. Nishijima, Daniel; K. Simel, David L; Wisner, David H; Holmes, “Accumulation of carboxymethyl-lysine (CML) in human cortical bone,” HHS Public Access, 176(1) (2016) [Google Scholar]
  • M. S. K. Wanigasekara, X. Huang, J. K. Chakrabarty, A. Bugarin, and S. M. Chowdhury, “Arginine-Selective Chemical Labeling Approach for Identification and Enrichment of Reactive Arginine Residues in Proteins,” ACS Omega, 3(10) (2018). [Google Scholar]
  • P. Origin, A. Effects, H. Kashtoh, and K. Baek, “New Insights into the Latest Advancement in α -Amylase,” (2023). [Google Scholar]
  • A. S. Serafi et al., “Antihyperglycemic, antiglycation, anti-hypercholesteremic, and toxicity evaluation with gas chromatography mass spectrometry profiling for Aloe armatissima leaves,” Open Chem., 22(1) (2024). [CrossRef] [Google Scholar]
  • G. Wardani, J. Nugraha, R. Kurnijasanti, M. R. Mustafa, and S. A. Sudjarwo, “Molecular Mechanism of Fucoidan Nanoparticles as Protector on Endothelial Cell Dysfunction in Diabetic Rats’ Aortas,” Nutrients, 15(3) (2023). [Google Scholar]
  • E. Berends, R. J. van Oostenbrugge, S. Foulquier, and C. G. Schalkwijk, “Methylglyoxal, a highly reactive dicarbonyl compound, as a threat for blood brain barrier integrity,” Fluids Barriers CNS, 20(1) (2023). [CrossRef] [Google Scholar]
  • D. R. V Manimegalai Sengani, “Identification of potential antioxidant indices by biogenic gold nanoparticles in hyperglycemic Wistar rats,” Environ. Toxicol. Pharmacol., 50(11) (2017). [Google Scholar]
  • S. Khangholi, F. A. Majid, N. J. Berwary, F. Ahmad, and R. B. Aziz, “The Mechanisms of Inhibition of Advanced Glycation End Products Formation through Polyphenols in Hyperglycemic Condition,” Planta Med., 82 (2016). [Google Scholar]
  • N. Yadav, J. D. Palkhede, and S. Y. Kim, “Anti-Glucotoxicity Effect of Phytoconstituents via Inhibiting MGO-AGEs Formation and Breaking MGO-AGEs,” Int. J. Mol. Sci., 24(8) (2023). [Google Scholar]
  • M. A. G. Alexander Klaus, Robert Rau, “Modification and Cross-Linking of Proteins by Glycolaldehyde and Glyoxal: A Model System,” J. Agric. Food Chem., (2018) [Google Scholar]
  • A. K. D. Ranjita GhoshMoulick a, Jaydeep Bhattacharya a, Shibsekhar Roy a, Soumen Basak b, “Compensatory secondary structure alterations in protein glycation,” Biochim. Biophys. Acta - Proteins Proteomics, 1774(2) (2007) [Google Scholar]
  • A. K. D. P. Ranjita GhoshMoulick PhD, a, Jaydeep Bhattacharya MS, a, Chanchal K. Mitra PhD, b, Soumen Basak PhD, c, “Protein seeding of gold nanoparticles and mechanism of glycation sensing,” Nanomedicine Nanotechnology, Biol. Med., 3(3) (2007). [Google Scholar]
  • R. Ramasamy, S. F. Yan, and A. M. Schmidt, “Receptor for AGE (RAGE): Signaling mechanisms in the pathogenesis of diabetes and its complications,” Ann. N. Y. Acad. Sci., 1243(1) (2011). [Google Scholar]
  • N. Tanaka, H. Yonekura, S. Yamagishi, H. Fujimori, Y. Yamamoto, and H. Yamamoto, “The receptor for advanced glycation end products is induced by the glycation products themselves and tumor necrosis factor-α through nuclear factor-κB, and by 17β-estradiol through Sp-1 in human vascular endothelial cells,” J. Biol. Chem., 275(33) (2000). [Google Scholar]
  • W.-H. Liu, Y.-W. Liu, Z.-F. Chen, W.-F. Chiou, Y.-C. Tsai, and C.-C. Chen, “Calophyllolide content in Calophyllum inophyllum at different stages of maturity and its osteogenic activity.,” Molecules, 20(7) (2015). [Google Scholar]
  • S. A. a Davoud Sanajou a, Amir Ghorbani Haghjo b, Hassan Argani c, “AGE-RAGE axis blockade in diabetic nephropathy: Current status and future directions,” Eur. J. Pharmacol., 833 (2018). [Google Scholar]
  • M. Balbaa, S. A. Abdulmalek, and S. Khalil, “Oxidative stress and expression of insulin signaling proteins in the brain of diabetic rats: Role of Nigella sativa oil and antidiabetic drugs,” PLoS One, 12(5) (2017). [Google Scholar]
  • A. K. L Michelle Furtado, Romel Somwar, Gary Sweeney, Wenyan Niu, “Activation of the glucose transporter GLUT4 by insulin,” Biochem. Cell Biol., 80(5) (2002). [Google Scholar]
  • S. A. Abdulmalek and M. Balbaa, “Synergistic effect of nano-selenium and metformin on type 2 diabetic rat model: Diabetic complications alleviation through insulin sensitivity, oxidative mediators and inflammatory markers,” PLoS One, 14(8) (2019). [Google Scholar]
  • J. Boucher, A. Kleinridders, and C. R. Kahn, “Insulin Receptor Signaling in Normal,” Cold Spring Harb Perspect Biol 2014, 6 (2014). [Google Scholar]
  • I. B. S. Gomes et al., “The protective effects of oral low-dose quercetin on diabetic nephropathy in hypercholesterolemic mice,” Front. Physiol., 6 (2015). [Google Scholar]
  • A. Manuscript, “for Bone Regeneration,” 64(12) (2013). [Google Scholar]
  • A. Friedman, S. Claypool, and R. Liu, “The Smart Targeting of Nanoparticles,” Curr. Pharm. Des., 19(35) (2013). [Google Scholar]
  • S. A. A. Rizvi and A. M. Saleh, “Applications of nanoparticle systems in drug delivery technology,” Saudi Pharm. J., 26(1) (2018). [Google Scholar]
  • V. P. Singh, A. Bali, N. Singh, and A. S. Jaggi, “Advanced glycation end products and diabetic complications,” Korean J. Physiol. Pharmacol., 18(1) (2014). [CrossRef] [PubMed] [Google Scholar]
  • X. Cheng, Q. Xie, and Y. Sun, “Advances in nanomaterial-based targeted drug delivery systems,” Front. Bioeng. Biotechnol., 11 (2023). [Google Scholar]
  • S. L. Fishman, H. Sonmez, C. Basman, V. Singh, and L. Poretsky, “The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: A review,” Mol. Med., 24(1) (2018). [CrossRef] [Google Scholar]
  • K. Taguchi and K. Fukami, “RAGE signaling regulates the progression of diabetic complications,” Front. Pharmacol., 14 (2023). [CrossRef] [Google Scholar]
  • H. Koyama, H. Yamamoto, and Y. Nishizawa, “RAGE and soluble RAGE: Potential therapeutic targets for cardiovascular diseases,” Mol. Med., 13(11–12) (2007). [Google Scholar]
  • Y. Li et al., “Diabetic vascular diseases: molecular mechanisms and therapeutic strategies,” Signal Transduct. Target. Ther., 8(1) (2023). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.