Open Access
Issue
BIO Web Conf.
Volume 152, 2025
International Conference on Health and Biological Science (ICHBS 2024)
Article Number 01002
Number of page(s) 14
Section Dense Matter
DOI https://doi.org/10.1051/bioconf/202515201002
Published online 20 January 2025
  • J.F. Farragher, H.J. Polatajko, S.V. Jassal, The relationship between fatigue and depression in adults with end-stage renal disease on chronic in-hospital hemodialysis: A scoping review, J. Pain Symptom Manage. 53, 783–803.e1 (2017) [CrossRef] [Google Scholar]
  • L. Dai, E. Golembiewska, B. Lindholm, P. Stenvinkel, End-stage renal disease, inflammation and cardiovascular outcomes, Contrib. Nephrol. 191, 32–43 (2017). [CrossRef] [PubMed] [Google Scholar]
  • G. Cobo, B. Lindholm, P. Stenvinkel, Chronic inflammation in end-stage renal disease and dialysis, Nephrol. Dial. Transplant. 33, iii35–iii40 (2018). [CrossRef] [PubMed] [Google Scholar]
  • Baragetti, B. El Essawy, P. Fiorina, Targeting immunity in end-stage renal disease, Am. J. Nephrol. 45, 310–319 (2017). [CrossRef] [PubMed] [Google Scholar]
  • J.J. Carrero, P. Stenvinkel, Inflammation in end-stage renal disease—What have we learned in 10 years? Semin. Dial. 23, 498–509 (2010). [CrossRef] [Google Scholar]
  • M. Jankowska, G. Cobo, B. Lindholm, P. Stenvinkel, Inflammation and protein-energy wasting in the uremic milieu, Contrib. Nephrol. 191, 58–71 (2017). [CrossRef] [PubMed] [Google Scholar]
  • Z.A. Massy, S. Liabeuf, Middle-molecule uremic toxins and outcomes in chronic kidney disease, Contrib. Nephrol. 191, 8–17 (2017). [CrossRef] [PubMed] [Google Scholar]
  • R. Vanholder, A. Pletinck, E. Schepers, G. Glorieux, Biochemical and clinical impact of organic uremic retention solutes: A comprehensive update, Toxins (Basel) 10, 1 (2018). [Google Scholar]
  • S. Mihai, E. Codrici, I.D. Popescu, A.M. Enciu, L. Albulescu, L.G. Necula, et al., Inflammation-related mechanisms in chronic kidney disease prediction, progression, and outcome, J. Immunol. Res. 2018, 2180373 (2018). [CrossRef] [Google Scholar]
  • F. Wang, H. Jiang, K. Shi, Y. Ren, P. Zhang, S. Cheng, Gut bacterial translocation is associated with microinflammation in end-stage renal disease patients, Nephrology (Carlton) 17, 733–738 (2012). [CrossRef] [PubMed] [Google Scholar]
  • H.J. Anders, K. Andersen, B. Stecher, The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease, Kidney Int. 83, 1010–1016 (2013). [CrossRef] [PubMed] [Google Scholar]
  • J.P. Kooman, M.J. Dekker, L.A. Usvyat, P. Kotanko, F.M. van der Sande, C.G. Schalkwijk, et al., Inflammation and premature aging in advanced chronic kidney disease, Am. J. Physiol. Renal Physiol. 313, F938–F950 (2017). [CrossRef] [PubMed] [Google Scholar]
  • Chang, K. Ko, M.R. Clark, The emerging role of the inflammasome in kidney diseases, Curr. Opin. Nephrol. Hypertens. 23, 204–210 (2014). [CrossRef] [PubMed] [Google Scholar]
  • Vilaysane, J. Chun, M.E. Seamone, W. Wang, R. Chin, S. Hirota, et al., The NLRP3 inflammasome promotes renal inflammation and contributes to CKD, J. Am. Soc. Nephrol. 21, 1732–1744 (2010). [CrossRef] [PubMed] [Google Scholar]
  • S. Kato, M. Chmielewski, H. Honda, R. Pecoits-Filho, S. Matsuo, Y. Yuzawa, et al., Aspects of immune dysfunction in end-stage renal disease, Clin. J. Am. Soc. Nephrol. 3, 1526–1533 (2008). [CrossRef] [PubMed] [Google Scholar]
  • G. Glorieux, R. Vanholder, N. Lameire, Uraemic retention and apoptosis: What is the balance for the inflammatory status in uraemia? Eur. J. Clin. Invest. 33, 631–634 (2003). [CrossRef] [PubMed] [Google Scholar]
  • W.H. Lim, S. Kireta, E. Leedham, G.R. Russ, P.T. Coates, Uremia impairs monocyte and monocyte-derived dendritic cell function in hemodialysis patients, Kidney Int. 72, 1138–1148 (2007). [CrossRef] [PubMed] [Google Scholar]
  • M.A. Verkade, C.J. van Druningen, L.M.B. Vaessen, D.A. Hesselink, W. Weimar, M.G.H. Betjes, Functional impairment of monocyte-derived dendritic cells in patients with severe chronic kidney disease, Nephrol. Dial. Transplant. 22, 128–138 (2007). [Google Scholar]
  • P. Stenvinkel, M. Ketteler, R.J. Johnson, B. Lindholm, R. Pecoits-Filho, M. Riella, et al., IL-10, IL-6, and TNF-alpha: Central factors in the altered cytokine network of uremia—The good, the bad, and the ugly, Kidney Int. 67, 1216–1233 (2005). [CrossRef] [PubMed] [Google Scholar]
  • J. Axelsson, O. Heimburger, P. Stenvinkel, Adipose tissue and inflammation in chronic kidney disease, Contrib. Nephrol. 151, 165–174 (2006). [CrossRef] [Google Scholar]
  • D.M. Xiang, X.Z. Song, Z.M. Zhou, Y. Liu, X.Y. Dai, X.L. Huang, et al., Chronic kidney disease promotes chronic inflammation in visceral white adipose tissue, Am. J. Physiol. Renal Physiol. 312, F689–F701 (2017). [CrossRef] [PubMed] [Google Scholar]
  • J.D. Kerr, R.M. Holden, A.R. Morton, R.L. Nolan, W.M. Hopman, C.M. Pruss, et al., Associations of epicardial fat with coronary calcification, insulin resistance, inflammation, and fibroblast growth factor-23 in stage 3–5 chronic kidney disease, BMC Nephrol. 14, 26 (2013). [CrossRef] [PubMed] [Google Scholar]
  • M.R. Hernandez, A.M. Galan, A. Cases, J. Lopez-Pedret, A. Pereira, R. Tonda, et al., Biocompatibility of cellulosic and synthetic membranes assessed by leukocyte activation, Am. J. Nephrol. 24, 235–241 (2004). [CrossRef] [PubMed] [Google Scholar]
  • S. Shirazian, C.D. Grant, O. Aina, J. Mattana, F. Khorassani, A.C. Ricardo, Depression in chronic kidney disease and end-stage renal disease: Similarities and differences in diagnosis, epidemiology, and management, Kidney Int. Rep. 2, 94–107 (2017). [CrossRef] [Google Scholar]
  • S.A. Wolf, H.W.G.M. Boddeke, H. Kettenmann, Microglia in physiology and disease, Annu. Rev. Physiol. 79, 619–643 (2017). [CrossRef] [PubMed] [Google Scholar]
  • D. Brites, A. Fernandes, Neuroinflammation and depression: Microglia activation, extracellular microvesicles and microRNA dysregulation, Front. Cell Neurosci. 9, 476 (2015). [CrossRef] [Google Scholar]
  • R. Yirmiya, N. Rimmerman, R. Reshef, Depression as a microglial disease, Trends Neurosci. 38, 637–657 (2015). [CrossRef] [PubMed] [Google Scholar]
  • D. Nayak, T.L. Roth, D.B. McGavern, Microglia development and function, Annu. Rev. Immunol. 32, 367–402 (2014). [CrossRef] [PubMed] [Google Scholar]
  • K. Takahashi, C.D.P. Rochford, H. Neumann, Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2, J. Exp. Med. 201, 647–657 (2005). [CrossRef] [PubMed] [Google Scholar]
  • F.L. Yeh, D.V. Hansen, M. Sheng, TREM2, microglia, and neurodegenerative diseases, Trends Mol. Med. 23, 512–533 (2017). [CrossRef] [Google Scholar]
  • D.L. Kober, T.J. Brett, TREM2-ligand interactions in health and disease, J. Mol. Biol. 429, 1607–1629 (2017). [CrossRef] [Google Scholar]
  • G.A. Prieto, C.W. Cotman, Cytokines and cytokine networks target neurons to modulate long-term potentiation, Cytokine Growth Factor Rev. 34, 27–33 (2017). [CrossRef] [PubMed] [Google Scholar]
  • Y. Lee, S.R. Lee, S.S. Choi, H.G. Yeo, K.T. Chang, H.J. Lee, Therapeutically targeting neuroinflammation and microglia after acute ischemic stroke, Biomed Res. Int. 2014, 297241 (2014). [Google Scholar]
  • H. Wake, A.J. Moorhouse, S. Jinno, S. Kohsaka, J. Nabekura, Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals, J. Neurosci. 29, 3974–3984 (2009). [CrossRef] [PubMed] [Google Scholar]
  • R.C. Paolicelli, M.T. Ferretti, Function and dysfunction of microglia during brain development: Consequences for synapses and neural circuits, Front. Synaptic Neurosci. 9, 9 (2017). [CrossRef] [Google Scholar]
  • M.R. Griffiths, P. Gasque, J.W. Neal, The multiple roles of the innate immune system in the regulation of apoptosis and inflammation in the brain, J. Neuropathol. Exp. Neurol. 68, 217–226 (2009). [CrossRef] [PubMed] [Google Scholar]
  • J. Yin, K.L. Valin, M.L. Dixon, J.W. Leavenworth, The role of microglia and macrophages in CNS homeostasis, autoimmunity, and cancer, J. Immunol. Res. 2017, 5150678 (2017). [Google Scholar]
  • M.L. Howe, B.A. Barres, A novel role for microglia in minimizing excitotoxicity, BMC Biol. 10, 7 (2012). [CrossRef] [PubMed] [Google Scholar]
  • E.R. Matarredona, R. Talaverón, A.M. Pastor, Interactions between neural progenitor cells and microglia in the subventricular zone: Physiological implications in the neurogenic niche and after implantation in the injured brain, Front. Cell Neurosci. 12, 268 (2018). [CrossRef] [Google Scholar]
  • M. Erta, A. Quintana, J. Hidalgo, Interleukin-6, a major cytokine in the central nervous system, Int. J. Biol. Sci. 8, 1254–1266 (2012). [CrossRef] [Google Scholar]
  • W.L. Lau, B.N. Huisa, M. Fisher, The cerebrovascular-chronic kidney disease connection: Perspectives and mechanisms, Transl. Stroke Res. 8, 67–76 (2017). [CrossRef] [PubMed] [Google Scholar]
  • Y. Gilgun-Sherki, E. Melamed, D. Offen, Oxidative stress-induced neurodegenerative diseases: The need for antioxidants that penetrate the blood-brain barrier, Neuropharmacology 40, 959–975 (2001). [CrossRef] [PubMed] [Google Scholar]
  • W. Pan, K.P. Stone, H. Hsuchou, V.K. Manda, Y. Zhang, A.J. Kastin, Cytokine signaling modulates blood-brain barrier function, Curr. Pharm. Des. 17, 3729–3740 (2011). [CrossRef] [Google Scholar]
  • J.D. Pearson, Normal endothelial cell function, Lupus 9, 183–188 (2000). [CrossRef] [PubMed] [Google Scholar]
  • P. Rajendran, T. Rengarajan, J. Thangavel, Y. Nishigaki, D. Sakthisekaran, G. Sethi, et al., The vascular endothelium and human diseases, Int. J. Biol. Sci. 9, 1057–1069 (2013). [CrossRef] [Google Scholar]
  • W. Jing, B. Jabbari, N.D. Vaziri, Uremia induces upregulation of cerebral tissue oxidative/inflammatory cascade, down-regulation of Nrf2 pathway, and disruption of blood-brain barrier, Am. J. Transl. Res. 10, 2137–2147 (2018). [Google Scholar]
  • Presta, M. Vismara, F. Novellino, A. Donato, P. Zaffino, E. Scali, et al., Innate immunity cells and the neurovascular unit, Int. J. Mol. Sci. 19, 1–16 (2018). [Google Scholar]
  • G. Cohen, W.H. Hörl, Immune dysfunction in uremia: An update, Toxins (Basel) 4, 962–990 (2012). [CrossRef] [PubMed] [Google Scholar]
  • F. Picariello, R. Moss-Morris, I.C. Macdougall, J. Chilcot, The role of psychological factors in fatigue among end-stage kidney disease patients: A critical review, Clin. Kidney J. 10, 79–88 (2017). [Google Scholar]
  • E. Karadag, S.P. Kilic, O. Metin, Relationship between fatigue and social support in hemodialysis patients, Nurs. Health Sci. 15, 164–171 (2013). [CrossRef] [PubMed] [Google Scholar]
  • J. Kaur, B.E. Young, P.J. Fadel, Sympathetic overactivity in chronic kidney disease: Consequences and mechanisms, Int. J. Mol. Sci. 18, 1–10 (2017). [Google Scholar]
  • S.F. Yanuck, Microglial phagocytosis of neurons: Diminishing neuronal loss in traumatic, infectious, inflammatory, and autoimmune CNS disorders, Front. Psychiatry 10, 712 (2019). [CrossRef] [Google Scholar]
  • S. Adesso, T. Magnus, S. Cuzzocrea, M. Campolo, B. Rissiek, O. Paciello, et al., Indoxyl sulfate affects glial function, increasing oxidative stress and neuroinflammation in chronic kidney disease: Interaction between astrocytes and microglia, Front. Pharmacol. 8, 370 (2017). [CrossRef] [Google Scholar]
  • W. Xiong, F.F. He, R.Y. You, J. Xiong, Y.M. Wang, C. Zhang, et al., Acupuncture application in chronic kidney disease and its potential mechanisms, Am. J. Chin. Med. 46, 1169–1185 (2018). [CrossRef] [PubMed] [Google Scholar]
  • K.H. Kim, M.S. Lee, T.H. Kim, J.W. Kang, T.Y. Choi, J.D. Lee, Acupuncture and related interventions for symptoms of chronic kidney disease, Cochrane Database Syst. Rev. 6, CD009440 (2016). [Google Scholar]
  • J.S. Yu, C.H. Ho, H.Y. Wang, Y.H. Chen, C.L. Hsieh, Acupuncture on renal function in patients with chronic kidney disease: A single-blinded, randomized, preliminary controlled study, J. Altern. Complement. Med. 23, 624–631 (2017). [CrossRef] [PubMed] [Google Scholar]
  • I.U. Rehman, D. Bin-Chia Wu, R. Ahmed, N.A. Khan, A.U. Rahman, S. Munib, et al., A randomized controlled trial for effectiveness of zolpidem versus acupressure on sleep in hemodialysis patients having chronic kidney disease-associated pruritus, Medicine (Baltimore) 97, e10764 (2018). [CrossRef] [PubMed] [Google Scholar]
  • S.A. Combs, J.P. Teixeira, M.J. Germain, Pruritus in kidney disease, Semin. Nephrol. 35, 383–391 (2015). [CrossRef] [Google Scholar]
  • G.E. Garcia, S.X. Ma, L. Feng, Acupuncture and kidney disease, Adv. Chronic Kidney Dis. 12, 282–291 (2005). [CrossRef] [Google Scholar]
  • S.L. Tsay, Acupressure and fatigue in patients with end-stage renal disease: A randomized controlled trial, Int. J. Nurs. Stud. 41, 99–106 (2004). [CrossRef] [Google Scholar]
  • S.L. Tsay, Y.C. Cho, M.L. Chen, Acupressure and transcutaneous electrical acupoint stimulation in improving fatigue, sleep quality, and depression in hemodialysis patients, Am. J. Chin. Med. 32, 407–416 (2004). [CrossRef] [PubMed] [Google Scholar]
  • Shariati, S. Jahani, M. Hooshmand, N. Khalili, The effect of acupressure on sleep quality in hemodialysis patients, Complement. Ther. Med. 20, 417–423 (2012). [CrossRef] [Google Scholar]
  • R. Raina, V. Krishnappa, M. Gupta, Management of pain in end-stage renal disease patients: Short review, Hemodial. Int. 22, 290–296 (2018). [CrossRef] [PubMed] [Google Scholar]
  • R. Zhang, L. Lao, K. Ren, B.M. Berman, Mechanisms of acupunctureelectroacupuncture on persistent pain, Anesthesiology 120, 482–503 (2014). [CrossRef] [PubMed] [Google Scholar]
  • H. Jiang, X. Zhang, Y. Wang, H. Zhang, J. Li, X. Yang, et al., Mechanisms underlying the antidepressant response of acupuncture via PKA/CREB signaling pathway, Neural Plast. 2017, 4135164 (2017). [CrossRef] [Google Scholar]
  • J.Y. Park, U. Namgung, Electroacupuncture therapy in inflammation regulation: Current perspectives, J. Inflamm. Res. 11, 227–237 (2018). [CrossRef] [Google Scholar]
  • Yin, T.E. Buchheit, J.J. Park, Acupuncture for chronic pain: An update and critical overview, Curr. Opin. Anaesthesiol. 30, 583–592 (2017). [CrossRef] [PubMed] [Google Scholar]
  • Y. Liang, J.Y. Du, Y.J. Qiu, J.F. Fang, J. Liu, J.Q. Fang, Electroacupuncture attenuates spinal nerve ligation-induced microglial activation mediated by p38 mitogen-activated protein kinase, Chin. J. Integr. Med. 22, 704–713 (2016). [CrossRef] [PubMed] [Google Scholar]
  • Y. Xu, S. Hong, X. Zhao, S. Wang, Z. Xu, S. Ding, et al., Acupuncture alleviates rheumatoid arthritis by immune-network modulation, Am. J. Chin. Med. 46, 997–1019 (2018). [CrossRef] [PubMed] [Google Scholar]
  • Z. Wang, T. Chen, M. Long, L. Chen, L. Wang, N. Yin, et al., Electro-acupuncture at acupoint ST36 ameliorates inflammation and regulates Th1/Th2 balance in delayed-type hypersensitivity, Inflammation 40, 422–434 (2017). [CrossRef] [PubMed] [Google Scholar]
  • M. Taraz, S. Taraz, S. Dashti-Khavidaki, Association between depression and inflammatory/anti-inflammatory cytokines in chronic kidney disease and end-stage renal disease patients: A review of literature, Hemodial. Int. 19, 11–22 (2015). [CrossRef] [PubMed] [Google Scholar]
  • M. Bossola, E. Di Stasio, S. Giungi, F. Rosa, L. Tazza, Fatigue is associated with serum interleukin-6 levels and symptoms of depression in patients on chronic hemodialysis, J. Pain Symptom Manage. 49, 578–585 (2015). [CrossRef] [Google Scholar]
  • L. Nowak, M. Adamczak, A. Wiecek, Is inflammation a new risk factor of depression in haemodialysis patients? Int. Urol. Nephrol. 45, 1121–1128 (2013). [CrossRef] [PubMed] [Google Scholar]
  • J.M. Kang, H.J. Park, Y.G. Choi, I.H. Choe, J.H. Park, Y.S. Kim, et al., Acupuncture inhibits microglial activation and inflammatory events in the MPTP-induced mouse model, Brain Res. 1131, 211–219 (2007). [CrossRef] [PubMed] [Google Scholar]
  • Han, Y. Lu, H. Zhao, Y. Wang, L. Li, T. Wang, Electroacupuncture modulated the inflammatory reaction in MCAO rats via inhibiting the TLR4/NF-κB signaling pathway in microglia, Int. J. Clin. Exp. Pathol. 8, 11199–11205 (2015). [Google Scholar]
  • D.C. Choi, J.Y. Lee, E.J. Lim, H.H. Baik, T.H. Oh, T.Y. Yune, Inhibition of ROSinduced p38MAPK and ERK activation in microglia by acupuncture relieves neuropathic pain after spinal cord injury in rats, Exp. Neurol. 236, 268–282 (2012). [CrossRef] [Google Scholar]
  • X.R. Wang, G.X. Shi, J.W. Yang, C.Q. Yan, L.T. Lin, S.Q. Du, et al., Acupuncture ameliorates cognitive impairment and hippocampus neuronal loss in experimental vascular dementia through Nrf2-mediated antioxidant response, Free Radic. Biol. Med. 89, 1077–1084 (2015). [CrossRef] [Google Scholar]
  • W. Xiong, A.E. MacColl Garfinkel, Y. Li, L.I. Benowitz, C.L. Cepko, NRF2 promotes neuronal survival in neurodegeneration and acute nerve damage, J. Clin. Invest. 125, 1433–1445 (2015). [CrossRef] [PubMed] [Google Scholar]
  • L.L. Simatupang, R.M. Sinaga, Pengaruh akupresur dan latihan napas dalam terhadap fatigue dan kualitas tidur pasien hemodialisa di Murni Teguh Memorial Hospital, Jurnal Riset Hesti Medan Akper Kesdam I/BB Medan 5, 56–60 (2020). [CrossRef] [Google Scholar]
  • Diyanto, V. Febryandy, A.G. Irawan, Efektivitas terapi akupresur terhadap kualitas hidup pasien selama hemodialisa: Studi systematic review dan meta-analysis, Indonesian J. Nurs. Sci. Pract. 6, 27–34 (2023). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.