Open Access
Issue |
BIO Web Conf.
Volume 152, 2025
International Conference on Health and Biological Science (ICHBS 2024)
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 16 | |
Section | Dense Matter | |
DOI | https://doi.org/10.1051/bioconf/202515201003 | |
Published online | 20 January 2025 |
- D. Limmathurotsakul, S. Dunachie, K. Fukuda, Improving the estimation of the global burden of antimicrobial resistant infections. Lancet Infect. Dis. (2019). [Google Scholar]
- M. de Kraker, A.J. Stewardson, S. Harbarth, Will 10 million people die a year due to antimicrobial resistance by 2050 ? PLoS Med. (2016) [Google Scholar]
- P. Shrestha, B.S. Cooper, J. Coast, et al., Enumerating the economic cost of antimicrobial resistance per antibiotic consumed to inform the evaluation of interventions affecting their use. Antimicrob. Resist. Infect. (2018). [Google Scholar]
- M.A. Abushaheen, A.J. Fatani, M. Alosaimi, W. Mansy, Antimicrobial resistance, mechanisms and its clinical significance. Dis. Mon. (2020) [Google Scholar]
- C. Bourély, T. Coeffic, J. Caillon, S. Thibaut, Trends in antimicrobial resistance among Escherichia coli from defined infections in humans and animals. J. Antimicrob. Chemother. 75, 1525 (2020). [CrossRef] [PubMed] [Google Scholar]
- I. Frost, G. Kapoor, J. Craig, D. Liu, Status, challenges and gaps in antimicrobial resistance surveillance around the world. Lancet Microbe. (2021). [Google Scholar]
- World Health Organization, Global antimicrobial resistance and use surveillance system (GLASS) report 2022 (World Health Organization, Geneva, 2022). [Google Scholar]
- Organization WH. Record number of countries contribute data revealing disturbing rates of antimicrobial resistance. World Health Organization (2020) [Google Scholar]
- C. Nejjari, Y. El Achhab, A. Benaouda, C. Abdelfattah, Antimicrobial resistance among GLASS pathogens in Morocco : an epidemiological scoping review. BMC Infect. Dis. 22, 438 (2022) [CrossRef] [Google Scholar]
- J.D. Lutgring, Carbapenem-resistant Enterobacteriaceae: An emerging bacterial threat. Semin Diagn Pathol. 36, 182–186 (2019) [CrossRef] [PubMed] [Google Scholar]
- N. Bouihat, C. Burucoa, A. Benkirane, H. Seddik, S. Sentissi, A. Bouzidi, et al., Helicobacter pylori Primary Antibiotic Resistance in 2015 in Morocco : A Phenotypic and Genotypic Prospective and Multicenter Study. Microb. Drug Resist. 23, 727–732 (2017) [CrossRef] [PubMed] [Google Scholar]
- C. Elmouaden, A. Laglaoui, L. Ennanei, M. Bakkali, M. Abid, Virulence genes and antibiotic resistance of Pseudomonas aeruginosa isolated from patients in the Northwestern of Morocco. J. Infect. Dev. Ctries. 13, 892–898 (2019) [CrossRef] [Google Scholar]
- E.L. Tsalik, E. Petzold, B.N. Kreiswirth, R.A. Bonomo, R. Banerjee, E. Lautenbach, et al., Advancing diagnostics to address antibacterial resistance : The diagnostics and devices committee of the antibacterial resistance leadership group. Clin. Infect. Dis. 64, S41–S47 (2017) [CrossRef] [PubMed] [Google Scholar]
- N. Bouihat, C. Burucoa, A. Benkirane, H. Seddik, S. Sentissi, A. Al Bouzidi, et al., Helicobacter pylori primary antibiotic resistance in 2015 in Morocco: A phenotypic and genotypic prospective and multicenter study. Microb. Drug Resist. 23, 727–732 (2017). [CrossRef] [PubMed] [Google Scholar]
- I. Mugerwa, S.N. Nabadda, J. Midega, C. Guma, S. Kalyesubula, A. Muwonge, Antimicrobial resistance situational analysis 2019–2020 : Design and performance for human health surveillance in Uganda. Trop. Med. Infect. Dis. 6, 178 (2021) [CrossRef] [Google Scholar]
- T. Poomchaichote, A. Osterrieder, R. Prapharsavat, B. Naemiratch, S. Ruangkajorn, C. Thirapantu, et al., “AMR Dialogues”: A public engagement initiative to shape policies and solutions on antimicrobial resistance (AMR) in Thailand. Wellcome Open Res. (2021) [Google Scholar]
- M. Pillonetto, R.T.D.S. Jordão, G.S. Andraus, R. Bergamo, F.B. Rocha, M.C. Onishi, et al., The experience of implementing a national antimicrobial resistance surveillance system in Brazil. Front. Public Health. 8, 575536 (2021) [CrossRef] [Google Scholar]
- K.L. Hopkins, R.H. Davies, E.J. Threlfall, Mechanisms of quinolone resistance in Escherichia coli and Salmonella : Recent developments. Int. J. Antimicrob. Agents. 25, 358–373 (2005) [CrossRef] [Google Scholar]
- Anvisa, Boletim Segurança do Paciente e Qualidade em Serviços de Saúde no 16. Avaliação dos indicadores nacionais das Infecções Relacionadas à Assistência à Saúde (IRAS) e Resistência microbiana do ano de 2016 (2019) [Google Scholar]
- S.K. Glass-Kaastra, D.L. Pearl, R.J. Reid-Smith, B. McEwen, S.A. McEwen, R. Amezcua, et al., Describing antimicrobial use and reported treatment efficacy in Ontario swine using the Ontario swine veterinary-based Surveillance program. BMC Vet. Res. 9, 238 (2013) [CrossRef] [Google Scholar]
- J.G. Cho, S.A. Dee, J. Deen, A. Guedes, C. Trincado, E. Fano, et al., Evaluation of the effects of animal age, concurrent bacterial infection, and pathogenicity of porcine reproductive and respiratory syndrome virus on virus concentration in pigs. Am. J. Vet. Res. 67, 489–493 (2006) [CrossRef] [PubMed] [Google Scholar]
- S. Van Gucht, G. Labarque, K. Van Reeth, The combination of PRRS virus and bacterial endotoxin as a model for multifactorial respiratory disease in pigs. Vet. Immunol. Immunopathol. 102, 165–178 (2004) [CrossRef] [Google Scholar]
- Canadian Veterinary Medical Association, The CVMA Adopts Guidelines for the Prudent Use of Antimicrobial Drugs in Swine. Can. Vet. J. 43, 421 (2002) [Google Scholar]
- R. Safdari, M. GhaziSaeedi, H. Masoumi-Asl, P. Rezaei-Hachesu, et al., A national framework for an antimicrobial resistance surveillance system within Iranian healthcare facilities: Towards a global surveillance system. J. Glob. Antimicrob. Resist. 10, 59–69 (2017) [CrossRef] [Google Scholar]
- K.S.R. Niakan, B. Tayefi, A. Noori, M. Mearaji, S. Rahimzadeh, E. Zandian, et al., Inpatient data, inevitable need for policy making at national and sub-national levels: A lesson learned from NASBOD (study protocol) (2014) [Google Scholar]
- C.G. Giske, G. Cornaglia, Supranational surveillance of antimicrobial resistance: The legacy of the last decade and proposals for the future. Drug Resist. Updat. 13, 93–98 (2010) [CrossRef] [Google Scholar]
- WHO, GLASS whole-genome sequencing for surveillance of antimicrobial resistance (2020) [Google Scholar]
- T. Kajihara, K. Yahara, J. Stelling, S.R. Eremin, B. Tornimbene, V. Thamlikitkul, et al., Comparison of de-duplication methods used by WHO Global Antimicrobial Resistance Surveillance System (GLASS) and Japan Nosocomial Infections Surveillance (JANIS) in the surveillance of antimicrobial resistance. PLoS One. 15, e0228234 (2020) [CrossRef] [PubMed] [Google Scholar]
- WHO, Global antimicrobial resistance surveillance system : manual for early implementation (2015) [Google Scholar]
- T.A. Reed, S. Krang, T. Miliya, N. Townell, J. Letchford, S. Bun, et al., Antimicrobial resistance in Cambodia: a review. Int. J. Infect. Dis. 85, 98–107 (2019) [CrossRef] [Google Scholar]
- E.A. Ashley, Y. Lubell, N.J. White, P. Turner, Antimicrobial susceptibility of bacterial isolates from community-acquired infections in Sub-Saharan Africa and Asian lowand middle-income countries. Trop. Med. Int. Health 16, 1167–1179 (2011). [CrossRef] [PubMed] [Google Scholar]
- Y.G. Kim, A.Z. Baltabekova, E.E. Zhiyenbay, et al., Recombinant Vaccinia virus-coded interferon inhibitor B18R : Expression, refolding, and use in a mammalian expression system with an RNA vector. PLoS One 12, e0189308 (2017). [CrossRef] [PubMed] [Google Scholar]
- W.P. Sandar, S. Saw, A.M.V. Kumar, et al., Wounds, antimicrobial resistance, and challenges of implementing a surveillance system in Myanmar : A mixed-methods study. Trop. Med. Infect. Dis. 6, 80 (2021). [CrossRef] [Google Scholar]
- R.M. Darwish, S.G. Matar, A.A.A. Snaineh, et al., Impact of antimicrobial stewardship on antibiogram, consumption, and incidence of multidrug resistance. BMC Infect. Dis. 22, 916 (2022). [CrossRef] [Google Scholar]
- J. Acharya, M. Zolfo, W. Enbiale, et al., Quality assessment of an antimicrobial resistance surveillance system in a province of Nepal. Trop. Med. Infect. Dis. 6, 60 (2021). [CrossRef] [Google Scholar]
- C. Lim, E. Takahashi, M. Hongsuwan, et al., Epidemiology and burden of multidrugresistant bacterial infection in a developing country. eLife 5, e18082 (2016). [CrossRef] [PubMed] [Google Scholar]
- D.K. Saeed, J. Farooqi, S. Shakoor, et al., Antimicrobial resistance among GLASS priority pathogens from Pakistan : 2006–2018. BMC Infect. Dis. 21, 1–16 (2021). [CrossRef] [Google Scholar]
- S. Manandhar, R.M. Zellweger, N. Maharjan, et al., A high prevalence of multidrugresistant Gram-negative bacilli in a Nepali tertiary care hospital and associated widespread distribution of Extended-Spectrum Beta-Lactamase (ESBL) and carbapenemase-encoding genes. Ann. Clin. Microbiol. Antimicrob. 19, 1–13 (2020). [CrossRef] [Google Scholar]
- T. Roberts, D. Limmathurotsakul, P. Turner, et al., Antimicrobial-resistant Gramnegative colonization in infants from a neonatal intensive care unit in Thailand. J. Hosp. Infect. 103, 151–155 (2019). [CrossRef] [Google Scholar]
- R. Shrestha, P. Koju, X.L. Liu, et al., Healthcare-associated infection and trend of antimicrobial resistance in a tertiary care hospital—a study in a low-income setting. Kathmandu Univ. Med. J. 68, 329–335 (2019). [Google Scholar]
- N. Droz, Y. Hsia, S. Ellis, A. Dramowski, M. Sharland, R. Basmaci, Bacterial pathogens and resistance causing community-acquired pediatric bloodstream infections in low-and middle-income countries: A systematic review and meta-analysis. Antimicrob. [Google Scholar]
- E.J. Klemm, S. Shakoor, A.J. Page, F.N. Qamar, K. Judge, D.K. Saeed, et al., Emergence of an extensively drug-resistant Salmonella enterica serovar Typhi clone harboring a promiscuous plasmid encoding resistance to fluoroquinolones and third-generation cephalosporins. MBio 9, e00105–18 (2018). [CrossRef] [PubMed] [Google Scholar]
- E.S. Mohamed, R.M. Khairy, S.S. Abdelrahim, Prevalence and molecular characteristics of ESBL and AmpC β-lactamase producing Enterobacteriaceae strains isolated from UTIs in Egypt. Antimicrob. Resist. Infect. Control. 9, 1–9 (2020). [CrossRef] [Google Scholar]
- E.J. Steinig, S. Duchene, D.A. Robinson, S. Monecke, M. Yokoyama, M. Laabei, et al., Evolution and global transmission of a multidrug-resistant, community-associated methicillin-resistant Staphylococcus aureus lineage from the Indian subcontinent. MBio 10, e01105–19 (2019). [CrossRef] [PubMed] [Google Scholar]
- H. Lee, E.J. Yoon, D. Kim, S.H. Jeong, J.H. Shin, J.H. Shin, et al., Establishment of the South Korean national antimicrobial resistance surveillance system, Kor-GLASS, in 2016. Eurosurveillance 23, 1700734 (2018). [Google Scholar]
- D. Kim, E.J. Yoon, J.S. Hong, M.H. Choi, H.S. Kim, Y.R. Kim, et al., Major bloodstream infection-causing bacterial pathogens and their antimicrobial resistance in South Korea, 2017–2019: Phase I report from Kor-GLASS. Front. Microbiol. 12, 3958 (2022). [Google Scholar]
- C. Liu, E.J. Yoon, D. Kim, J.H. Shin, J.H. Shin, K.S. Shin, et al., Antimicrobial resistance in South Korea: A report from the Korean global antimicrobial resistance surveillance system (Kor-GLASS) for 2017. J. Infect. Chemother. 25, 845–859 (2019). [CrossRef] [Google Scholar]
- V. Chansamouth, D. Chommanam, T. Roberts, S. Keomany, V. Paphasiri, C. Phamisith, et al., Evaluation of trends in hospital antimicrobial use in the Lao PDR using repeated point-prevalence surveys—evidence to improve treatment guideline use. Lancet Reg. Health-West Pac. 27, 100531 (2022). [Google Scholar]
- R. Sirijatuphat, S. Chayangsu, J. Srisompong, D. Ruangkriengsin, V. Thamlikitkul, S. Tiengrim, et al., Feasibility, challenges, and benefits of Global Antimicrobial Resistance Surveillance System implementation: Results from a multicenter quasi-experimental study. Antibiotics 11, 348 (2022). [CrossRef] [PubMed] [Google Scholar]
- R. Sirijatuphat, K. Sripanidkulchai, A. Boonyasiri, P. Rattanaumpawan, O. Supapueng, P. Kiratisin, et al., Implementation of Global Antimicrobial Resistance Surveillance System (GLASS) in patients with bacteremia. PLoS One 13, e0190132 (2018). [CrossRef] [PubMed] [Google Scholar]
- A.C. Seale, N.C. Gordon, J. Islam, S.J. Peacock, J.A.G. Scott, AMR Surveillance in low and middle-income settings—A roadmap for participation in the Global Antimicrobial Surveillance System (GLASS). Wellcome Open Res. 2, (2017). [Google Scholar]
- World Health Organization, Global antimicrobial resistance surveillance system (GLASS) report: Early implementation 2020. (2020). [Google Scholar]
- A. Abbara, T.M. Rawson, N. Karah, W. El-Amin, J. Hatcher, B. Tajaldin, et al., Antimicrobial resistance in the context of the Syrian conflict: Drivers before and after the onset of conflict and key recommendations. Int. J. Infect. Dis. 73, 1–6 (2018). [CrossRef] [Google Scholar]
- C. Truppa, M.N. Abo-Shehada, Antimicrobial resistance among GLASS pathogens in conflict and non-conflict affected settings in the Middle East: A systematic review. BMC Infect. Dis. 20, 1–26 (2020). [CrossRef] [Google Scholar]
- B. Tornimbene, S. Eremin, R. Abednego, E.O. Abualas, I. Boutiba, A. Egwuenu, et al., Global Antimicrobial Resistance and Use Surveillance System on the African continent: Early implementation 2017-2019. Afr. J. Lab. Med. 11, 1–11 (2022). [CrossRef] [Google Scholar]
- S. Kariuki, K. Kering, C. Wairimu, R. Onsare, C. Mbae, Antimicrobial resistance rates and surveillance in Sub-Saharan Africa: Where are we now? Infect. Drug Resist. 2022, 3589–3609. [Google Scholar]
- J.T. Bork, S. Leekha, K. Claeys, H. Seung, M. Tripoli, A. Amoroso, et al., Change in hospital antibiotic use and acquisition of multidrug-resistant gram-negative organisms after the onset of coronavirus disease 2019. Infect. Control. Hosp. Epidemiol. 42, 1115–1117 (2021). [CrossRef] [PubMed] [Google Scholar]
- E. Farfour, M. Lecuru, L. Dortet, M. Le Guen, C. Cerf, F. Karnycheff, et al., Carbapenemase-producing Enterobacterales outbreak: Another dark side of COVID-19. Am. J. Infect. Control. 48, 1533–1536 (2020). [CrossRef] [Google Scholar]
- A. Gomez-Simmonds, M.K. Annavajhala, T.H. McConville, D.E. Dietz, S.M. Shoucri, J.C. Laracy, et al., Carbapenemase-producing Enterobacterales causing secondary infections during the COVID-19 crisis at a New York City hospital. J. Antimicrob. Chemother. 76, 380–384 (2021). [CrossRef] [PubMed] [Google Scholar]
- B. Tiri, E. Sensi, V. Marsiliani, M. Cantarini, G. Priante, C. Vernelli, et al., Antimicrobial stewardship program, COVID-19, and infection control: Spread of carbapenem-resistant Klebsiella pneumoniae colonization in ICU COVID-19 patients. What did not work? J. Clin. Med. 9, 2744 (2020). [Google Scholar]
- S. Tomczyk, A. Taylor, A. Brown, M.E. De Kraker, A. El-Saed, M. Alshamrani, et al., Impact of the COVID-19 pandemic on the surveillance, prevention and control of antimicrobial resistance: A global survey. J. Antimicrob. Chemother. 76, 3045–3058 (2021). [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.