Open Access
Issue |
BIO Web Conf.
Volume 153, 2025
The 3rd IPB International Conference on Nutrition and Food (ICNF 2024)
|
|
---|---|---|
Article Number | 01006 | |
Number of page(s) | 10 | |
Section | Clinical Nutrition | |
DOI | https://doi.org/10.1051/bioconf/202515301006 | |
Published online | 28 January 2025 |
- KEMENKES, ‘Kanker Masih Membebani Dunia’. https://sehatnegeriku.kemkes.go.id/baca/blog/20240506/3045408/kanker-masih membebani-dunia/ (2024). [Google Scholar]
- V. Shrihastini et al, Plant derived bioactive compounds, their anti‐cancer effects and in silico approaches as an alternative target treatment strategy for breast cancer: An updated overview, Cancers (Basel). 13, 24 (2021). https://doi.org/10.3390/cancers13246222. [CrossRef] [PubMed] [Google Scholar]
- S.Y. Pan et al, New perspectives on how to discover drugs from herbal medicines: CAM’S outstanding contribution to modern therapeutics, Evidence-based Complementary and Alternative Medicine. 2013 (2013). https://doi.org/10.1155/2013/627375. [Google Scholar]
- A. F. Dibha et al, utilization of secondary metabolites in algae kappaphycus alvarezii as a breast cancer drug with a computational method, Pharmacognosy J. 14, 3 (2022). https://doi.org/10.5530/pj.2022.14.68. [Google Scholar]
- H. Masuda, D. Zhang, C. Bartholomeus et al, Role of epidermal growth factor receptor in breast cancer, Breast Cancer Res. Treat. 136, 331-345 (2012), https://doi.org/10.1007/s10549-012-2289-9.Role. [CrossRef] [PubMed] [Google Scholar]
- F. Ye et al, Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer, BioMed Central Ltd. 01 (2023). https://doi.org/10.1186/s12943-023- 01805-y. [Google Scholar]
- N.A. Ramadanti, L. Erlina, R.I. Paramita, A. Tedjo, F. Fadillah, and S. Dwira, Pharmacophore modeling, molecular docking, and ADMET approach for identification of anti-cancer agents targeting the C-Jun N-Terminal Kinase (JNK) protein, 24, 1 (2023) https://doi.org/10.24036/eksakta/vol24-iss01/391. [Google Scholar]
- R. Sultana, Molecular docking based virtual screening of the breast cancer target NUDT5, Bioinformation. 15 (11) (2019), https://doi.org/10.6026/97320630015784. [CrossRef] [Google Scholar]
- A. Doostmohammadi, H. Jooya, K. Ghorbanian, S. Gohari, and M. Dadashpour, Potentials and future perspectives of multi-target drugs in cancer treatment: the next generation anti-cancer agents, Cell Com. Sig. 22 (1) (2024). https://doi.org/10.1186/s12964-024-01607-9. [Google Scholar]
- Peringati Hari Kesehatan Nasional, Dinkes Kaltim Gelar Pemeriksaan Kanker Gratis’. https://diskominfo.kaltimprov.go.id/kesehatan/peringati-hari-kesehatan-nasional- dinkes-kaltim-gelar-pemeriksaan-kanker -gratis (2022). [Google Scholar]
- A. Najihudin, D. Rahmat, and S. Evani, A. Rizki, Formulation of instant granules from ethanol extract of tahongai (Kleinhovia hospita L .) leaves as antioxidant, Jurnal Ilmiah Farmako Bahari. 10, 91–112, (2019). https://doi.org/10.52434/jfb.v10i1.651 [CrossRef] [Google Scholar]
- S. Paramita, Tahongai (Kleinhovia hospita L.): Review sebuah tumbuhan obat dari Kalimantan Timur, Jurnal Tumbuhan Obat Indonesia. 9, 1 (2016) https://doi.org/10.22435/toi.v9i1.6390.29-36. [CrossRef] [Google Scholar]
- D. S. Druzhilovskiy et al, Computational platform Way2Drug: from the prediction of biological activity to drug repurposing, Russian Chemical Bulletin, 66, (2017). [Google Scholar]
- X. Wang et al, Inhibition of NADPH oxidase 4 attenuates lymphangiogenesis and tumor metastasis in breast cancer, The FASEB Journal. 35, 4 (2021). https://doi.org/10.1096/fj.202002533R. [Google Scholar]
- H.K. Song, J.M. Kim, E.M. Noh, H.J. Youn, and Y.R. Lee, Role of NOX1 and NOX5 in protein kinase C/reactive oxygen species-mediated MMP-9 activation and invasion in MCF-7 breast cancer cells, Mol. Med. Rep. 30, 4 (2024). https://doi.org/10.3892/mmr.2024.13312. [Google Scholar]
- L. Zhu et al, Inhibition of NADPH oxidase-ROS signal using hyaluronic acid nanoparticles for overcoming radioresistance in cancer therapy, ACS Nano. 16, 11 (2022). https://doi.org/10.1021/acsnano.2c07440. [Google Scholar]
- J. R. Branco et al, A novel naphthotriazolyl-4-oxoquinoline derivative that selectively controls breast cancer cells survival through the induction of apoptosis, Curr. Top. Med. Chem. 18, 17 (2018). [Google Scholar]
- S.R. Chowdhury, S. Biswas, G. Mandal, and A. Bhattacharyya, Abstract 943: RelA regulates CXCR5/CXCL13 transcription and associated immune response in breast cancer, Cancer Res. 77, 13 (2017). https://doi.org/10.1158/1538-7445.AM2017-943. [CrossRef] [Google Scholar]
- G.C. Kim et al, Upregulation of Ets1 expression by NFATc2 and NFKB1/RELA promotes breast cancer cell invasiveness, Oncogenesis. 7, 11 (2018). https://doi.org/10.1038/s41389-018-0101-3. [CrossRef] [Google Scholar]
- W. Xia et al, Resistance to ErbB2 tyrosine kinase inhibitors in breast cancer is mediated by calcium-dependent activation of RelA, Mol. Cancer Ther. 9, 2 (2010). https://doi.org/10.1158/1535-7163.MCT-09-1041. [CrossRef] [Google Scholar]
- Z.-X. Nora D. Mineva, W. Xiaobo, Y. Sanghwa, Y. Haoqiang, and G.E.S.J. Xiao, F. Michael, Inhibition of RelB by 1,25-Dihydroxyvitamin D3 promotes sensitivity of breast cancer cells to radiation, Neuron. 61, 1 (2009). https://doi.org/10.1002/jcp.21765.Inhibition. [CrossRef] [Google Scholar]
- A.P. Dawson, C.D. Frick, M. Burd, and B. Conliffe, Clinical significance of coadministration of moderate to strong CYP enzyme inhibitors with doxorubicin in breast cancer patients receiving AC chemotherapy. J. Oncol. Pharm. 0, 10781552231223124. https://doi.org/10.1177/10781552231223125. [Google Scholar]
- B. Kawahara and P. Mascharak, Inhibition of cytochrome P450 by carbon monoxide: relevance to drug resistance in human breast cancer therapy. Med. Res. Arch. 11, 4 (2023). https://doi.org/10.18103/mra.v11i4.3732. [CrossRef] [Google Scholar]
- S.E. Mayer, N.S. Weiss, J. Chubak, D.R. Doody, C.S. Carlson, K.W. Makar, M.A. Wurscher, K.E. Malone, CYP2D6-inhibiting medication use and inherited CYP2D6 variation in relation to adverse breast cancer outcomes after tamoxifen therapy. Cancer Causes and Control. 30, 1 (2019). https://doi.org/10.1007/s10552-018-1117-x. [Google Scholar]
- D.A. Ahmad, O.H. Negm, M.L. Alabdullah, S. Mirza, M.R. Hamed, V. Band, A.R. Green, I.O. Ellis, E.A. Rakha, Clinicopathological and prognostic significance of mitogen- activated protein kinases (MAPK) in breast cancers. Breast Cancer Res. Treat. 159, 3 (2016). https://doi.org/10.1007/s10549-016-3967-9. [Google Scholar]
- J. Merlin, A. Harlé, M. Lion, C. Ramacci, and A. Leroux, Expression and activation of P38 MAP kinase in invasive ductal breast cancers : Correlation with expression of the estrogen receptor, HER2 and downstream signaling phosphorylated proteins. 30, 4, 1943–1948 (2013). https://doi.org/10.3892/or.(2013).2645. [Google Scholar]
- H. Lu, Y. Guo, G. Gupta, and X. Tian, Mitogen-activated protein kinase (MAPK): New insights in breast cancer. J. Environ. Pathol. Toxicol. Oncol. 38, 1 (2019). https://doi.org/10.1615/JEnvironPatholToxico lOncol.2018028386. [CrossRef] [PubMed] [Google Scholar]
- J. M. S. Lazarte and N. S. Lamango, Activation of MAP kinase pathway by polyisoprenylated cysteinyl amide inhibitors causes apoptosis and disrupts breast cancer cell invasion. Biomedicines. 12, 3 (2024). https://doi.org/10.3390/biomedicines12030470. [Google Scholar]
- E. Jiménez and M. Montiel, Activation of MAP kinase by muscarinic cholinergic receptors induces cell proliferation and protein synthesis in human breast cancer cells. J. Cell. Physiol. 204, 2 (2005). https://doi.org/10.1002/jcp.20326. [Google Scholar]
- A.T. Regua, S. Bindal, M.K. Najjar, C. Zhuang, M. Khan, A.B.J. Arrigo, A.O Gonzalez, X.R. Zhang, J.J. Zhu, K. Watabe, H.W. Lo, Dual inhibition of the TrkA and JAK2 pathways using entrectinib and pacritinib suppresses the growth and metastasis of HER2-positive and triple-negative breast cancers. Cancer Lett. 10, 597 (2024). https://doi.org/10.1016/j.canlet.2024.217023. [Google Scholar]
- Z. Zhu, Q. Xiang, S. Li, C. Chen, and J. Shi, Serine/Threonine kinase 16 phosphorylates STAT3 and confers a JAK2-Inhibition resistance phenotype in triple-negative breast cancer. Biochem. Pharmacol. 225, 116268 (2024). https://doi.org/10.1016/j.bcp.2024.116268. [CrossRef] [Google Scholar]
- L. L. Coutinho, L.L Femino, A.L. Gonzalez, R.L. Moffat, W.F. Heinz, R.Y.S. Cheng, S.J. Lockett, M.C. Rangel, L.A. Ridnour, D.A. Wink, NOS2 and COX-2 Co-expression promotes cancer progression : a potential target for developing agents to prevent or treat highly aggressive breast cancer. Int. J. Mol. Sci. 25, 11 (2024). [Google Scholar]
- R.Y.S. Cheng, L.A. Ridnour, A.L. Wink, A.L. Gonzalez, E.L. Femino, H. Rittscher, V. Somasundaram, W.F. Heinz, L. Coutinho, M.C. Rangel, E.F. Edmondson, D. Butcher, R.J. Kinders, X. Li, S.T.C. Wong, D.W. McVicar, S.K. Anderson, S.M. Pore M, Hewitt, T.R. Billiar, S.A. Glynn, J.C. Chang, S.J. Lockett, S. Ambs, D.A. Wink, Interferon- gamma induces NOS2 and COX2 in ER-breast cancer that drives increase metastatic potential. Cancer Res. 83, 7 (2023). https://doi.org/10.1038/s41419-023-05834-9 [CrossRef] [Google Scholar]
- N. Avtandilyan, H. Javrushyan, M. Ginovyan, A. Karapetyan, and A. Trchounian, Anti- cancer effect of in vivo inhibition of nitric oxide synthase in a rat model of breast cancer. Mol. Cell. Biochem., 478, 2 (2023). [Google Scholar]
- V. Somasundaram et al., NOS2 and COX2 Blockade Limits TNBC Disease Progression and Alters CD8+ T Cell Spatial Orientation and Density (2022). [Google Scholar]
- V. Somasundaram, L.A. Ridnour, R.Y. Cheng, A.J. Walke, N. Kedei, D.D. Bhattacharyya, A.L. Wink, E.F. Edmondson, D. Butcher, A.C. Warner, T.H. Dorsey, D.A. Scheiblin, W. Heinz, R.J. Bryant, R.J. Kinders, S. Lipkowitz, S.T. Wong, M. Pore, S.M. Hewitt, D.W. McVicar, S.K. Anderson, J. Chang, S.A. Glynn, S. Ambs, S.J. Lockett, D.A. Wink, Systemic Nos2 Depletion and Cox inhibition limits TNBC disease progression and alters lymphoid cell spatial orientation and density. Redox. Biol., 58, 102529 (2022). https://doi.org/10.1016/j.redox.2022.102529. [CrossRef] [Google Scholar]
- S. Zhi, C. Chen, H. Huang, Z. Zhang, F. Zeng, and S. Zhang, Hypoxia-inducible factor in breast cancer: role and target for breast cancer treatment. Front. Immunol. 15 (2024). https://doi.org/10.3389/fimmu.2024.1370800. [Google Scholar]
- H. Dai, X. Sheng, Y. Wang, L. Zhou, Y. Lin, Y. Du, F. Yang, R. Sha, J. Peng, L. Yao, W. Yin, L. Lu, HIF1α regulates IL17 signaling pathway influencing sensitivity of taxane-based chemotherapy for breast cancer. Front. Cell. Dev. Biol. 9 (2021). https://doi.org/10.3389/fcell.2021.729965. [Google Scholar]
- X. Yi, M. Qi, M. Huang, S. Zhou, and J. Xiong, Honokiol inhibits HIF-1α-mediated glycolysis to halt breast cancer growth. Front. Pharmacol. 13 (2022). https://doi.org/10.3389/fphar.2022.796763. [Google Scholar]
- S.A. Anderson, B.B. Bartow, S. Harada, G.P. Siegal, S. Wei, V.L. Dal Zotto, X. Huang, p53 protein expression patterns associated with TP53 mutations in breast carcinoma. Breast Cancer Res. Treat., 207, 1 (2024), https://doi.org/10.1007/s10549-024-07357-z. [Google Scholar]
- L. S. Reinhardt, K. Groen, A. Xavier, and K.A. Avery-Kiejda, p53 dysregulation in breast cancer: insights on mutations in the TP53 network and p53 isoform expression. Int. J. Mol. Sci. 24, 12 (2023), https://doi.org/10.3390/ijms241210078. [Google Scholar]
- T. Haddad and Y. Douglas, Basic principles of antineoplastic therapies, Springer New York, 707–715 (2011). [Google Scholar]
- S. P. T. Pullakanam, M. Mannangatti, R. Nekkala, V. B. Madhavi, and R. S. Bellala, Effects of antineoplastic drugs on oxidative stress and prognosis of hematological and various biochemical parameters in the treatment of breast cancer, Int. J. Health Sci. (Qassim), 6 (2022), https://doi.org/10.53730/ijhs.v6ns6.12464. [Google Scholar]
- C. Ambrosi et al., Effect of adjuvant antineoplastic treatment on body weight change in women with breast cancer. Sci. Med. (Porto Alegre). 22, 3, 124–130, (2012), https://doi.org/10.15448/1980-6108.2012.3.10738. [Google Scholar]
- S. N. Shishido, E. B. Faulkner, A. Beck, and T. A. Nguyen, The effect of antineoplastic drugs in a male spontaneous mammary tumor model. PLoS One, 8, 6 (2013). https://doi.org/10.1371/journal.pone.0064866. [Google Scholar]
- Steelman James, A. McCubrey, Richard, A. Franklin, Patrick, M. Navolanic, Alberto, M. Martelli, S. Linda, Chemotherapy for breast cancer, Br. Med. J., 1, 6009, 583 (1976), https://doi.org/10.1136/bmj.1.6009.583-a. [Google Scholar]
- A. Maugeri et al., Targets Involved in the Anti-Cancer Activity of Quercetin in Breast, Colorectal and Liver Neoplasms’, Int J Mol Sci, 24, 3 (2023), https://doi.org/10.3390/ijms24032952. [Google Scholar]
- M. Ezzati, B. Yousefi, K. Velaei, and A. Safa, A review on anti-cancer properties of Quercetin in breast cancer. Life Sci. 248 (2020).. [Google Scholar]
- L. Meilawati, R. Dewi, A. Tasfiyati, A. Septama, and L. D. Antika, Scopoletin: anticancer potential and mechanism of action. Asian Pac. J. Trop. Biomed. 13, 1, 1–8 (2023), https://doi.org/10.4103/2221-1691.367685. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.