Open Access
Issue |
BIO Web Conf.
Volume 157, 2025
The 5th Sustainability and Resilience of Coastal Management (SRCM 2024)
|
|
---|---|---|
Article Number | 07002 | |
Number of page(s) | 17 | |
Section | Geo-Marine and Mapping Application for Coastal Area | |
DOI | https://doi.org/10.1051/bioconf/202515707002 | |
Published online | 05 February 2025 |
- Aminian, K., Ameri, S.: Application of artificial neural networks for reservoir characterization with limited data. J. Pet. Sci. Eng. 49, 212 (2005). [CrossRef] [Google Scholar]
- Garini, S.A., Shiddiqi, A.M., Utama, W., Insani, A.N.F.: Filling-well : An effective technique to handle incomplete well-log data for lithology classification using machine learning. MethodsX. 14, 103127 (2025). [CrossRef] [Google Scholar]
- Hair J, Anderson R, Babin B, Black W: Multivariate Data Analysis.pdf, (2010). [Google Scholar]
- Hallam, A., Mukherjee, D., Chassagne, R.: Multivariate imputation via chained equations for elastic well log imputation and prediction. Appl. Comput. Geosci. 14, 100083 (2022). [CrossRef] [Google Scholar]
- Myers, L., Sirois, M.J.: Spearman Correlation Coefficients, Differences between. Encycl. Stat. Sci. 1 (2005). [Google Scholar]
- Wangwongchai, A., Waqas, M., Dechpichai, P., Hlaing, P.T., Ahmad, S., Humphries, U.W.: Imputation of missing daily rainfall data; A comparison between artificial intelligence and statistical techniques. MethodsX. 11, 102459 (2023). [CrossRef] [Google Scholar]
- Leclezio, L., Jansen, A., Whittemore, V.H., De Vries, P.J.: Pilot validation of the tuberous sclerosis-associated neuropsychiatric disorders (TAND) checklist. Pediatr. Neurol. 52, 16 (2015). [CrossRef] [Google Scholar]
- Feng, C., Wang, H., Lu, N., Chen, T., He, H., Lu, Y., Tu, X.M.: Log-transformation and its implications for data analysis. Shanghai Arch. Psychiatry. 26, 105 (2014). [Google Scholar]
- Döppel, F.A., Votsmeier, M.: Efficient neural network models of chemical kinetics using a latent asinh rate transformation. React. Chem. Eng. 8, 2620 (2023). [CrossRef] [Google Scholar]
- Cai, J., Xu, X.: Bayesian analysis of mixture models with Yeo-Johnson transformation. Commun. Stat. - Theory Methods. 53, 6600 (2024). [CrossRef] [Google Scholar]
- Yang, L., Nguyen-Thoi, T., Tran, T.T.: Predicting the friction angle of clays using a multi-layer perceptron neural network enhanced by yeo-johnson transformation and coral reefs optimization. J. Rock Mech. Geotech. Eng. 16, 3982 (2024). [CrossRef] [Google Scholar]
- Box, G.E.P., Cox, D.R.: An Analysis of Transformations. J. R. Stat. Soc. Ser. B Stat. Methodol. 26, 211 (1964). [CrossRef] [Google Scholar]
- Probst, P., Boulesteix, A.L., Bischl, B.: Tunability: Importance of hyperparameters of machine learning algorithms. J. Mach. Learn. Res. 20, 1 (2019). [Google Scholar]
- Phung, V.H., Rhee, E.J.: A High-accuracy model average ensemble of convolutional neural networks for classification of cloud image patches on small datasets. Appl. Sci. 9, (2019). [Google Scholar]
- Zhao, Y., Zhang, W., Liu, X.: Grid search with a weighted error function: Hyper-parameter optimization for financial time series forecasting. Appl. Soft Comput. 154, 111362 (2024). [CrossRef] [Google Scholar]
- Mystakidis, A., Koukaras, P., Tsalikidis, N., Ioannidis, D., Tjortjis, C.: Energy Forecasting: A Comprehensive Review of Techniques and Technologies. Energies. 17, 1 (2024). [Google Scholar]
- Varma, B.V., Prasad, E. V., Singha, S.: Study on predicting compressive strength of concrete using supervised machine learning techniques. Asian J. Civ. Eng. 24, 2549 (2023). [CrossRef] [Google Scholar]
- Jierula, A., Wang, S., Oh, T.M., Wang, P.: Study on accuracy metrics for evaluating the predictions of damage locations in deep piles using artificial neural networks with acoustic emission data. Appl. Sci. 11, 1 (2021). [Google Scholar]
- Kumar Dubey, A., Kumar, A., García-Díaz, V., Kumar Sharma, A., Kanhaiya, K.: Study and analysis of SARIMA and LSTM in forecasting time series data. Sustain. Energy Technol. Assessments. 47, 101474 (2021). [CrossRef] [Google Scholar]
- Solanki, P., Baldaniya, D., Jogani, D., Chaudhary, B., Shah, M., Kshirsagar, A.: Artificial intelligence: New age of transformation in petroleum upstream. Pet. Res. 7, 106 (2022). [Google Scholar]
- Koroteev, D., Tekic, Z.: Artificial intelligence in oil and gas upstream: Trends, challenges, and scenarios for the future. Energy AI. 3, 100041 (2021). [CrossRef] [Google Scholar]
- Alruhaymi, A.Z., Kim, C.J.: Study on the Missing Data Mechanisms and Imputation Methods. Open J. Stat. 11, 477 (2021). [CrossRef] [Google Scholar]
- Woods, A.D., Gerasimova, D., Van Dusen, B., Nissen, J., Bainter, S., Uzdavines, A., Davis-Kean, P.E., Halvorson, M., King, K.M., Logan, J.A.R., Xu, M., Vasilev, M.R., Clay, J.M., Moreau, D., Joyal-Desmarais, K., Cruz, R.A., Brown, D.M.Y., Schmidt, K., Elsherif, M.M.: Best practices for addressing missing data through multiple imputation. Infant Child Dev. 33, 1 (2024). [Google Scholar]
- Skjeldal, M.E.: Machine Learning techniques for Prediction of Rock Properties from Reservoir Well Logs, (2021). [Google Scholar]
- Gitau, G.: Assessment of Elemental Content and Associated Radiological Exposure in Sand Beds of Tiva River, Kitui County, (2023). [Google Scholar]
- Lee, J., Cho, Y.: National-scale electricity peak load forecasting: Traditional, machine learning, or hybrid model? Energy. 239, 122366 (2022). [CrossRef] [Google Scholar]
- Wu, J., Chen, S.P., Liu, X.Y.: Efficient hyperparameter optimization through model-based reinforcement learning. Neurocomputing. 409, 381 (2020). [CrossRef] [Google Scholar]
- Yang, L., Shami, A.: On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing. 415, 295 (2020). [CrossRef] [Google Scholar]
- Belete, D.M., Huchaiah, M.D.: Grid search in hyperparameter optimization of machine learning models for prediction of HIV/AIDS test results. Int. J. Comput. Appl. 44, 875 (2022). [Google Scholar]
- Cho, H.U., Nam, Y., Choi, E.J., Choi, Y.J., Kim, H., Bae, S., Moon, J.W.: Comparative analysis of the optimized ANN, SVM, and tree ensemble models using Bayesian optimization for predicting GSHP COP. J. Build. Eng. 44, 103411 (2021). [CrossRef] [Google Scholar]
- Wu, J., Chen, X.Y., Zhang, H., Xiong, L.D., Lei, H., Deng, S.H.: Hyperparameter optimization for machine learning models based on Bayesian optimization. J. Electron. Sci. Technol. 17, 26 (2019). [Google Scholar]
- Mantovani, R.G., Rossi, A.L.D., Vanschoren, J., Bischl, B., De Carvalho, A.C.P.L.F.: Effectiveness of Random Search in SVM hyper-parameter tuning. Proc. Int. Jt. Conf. Neural Networks. 2015-Septe, 1 (2015). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.