Open Access
Issue
BIO Web Conf.
Volume 163, 2025
2025 15th International Conference on Bioscience, Biochemistry and Bioinformatics (ICBBB 2025)
Article Number 01007
Number of page(s) 12
Section Bioinformatics and Computational Biology
DOI https://doi.org/10.1051/bioconf/202516301007
Published online 06 March 2025
  • The raising resistance of pathogenic microbes to traditional chemical medications requires the development of revolutionary treatment techniques for infectious disorders. [Google Scholar]
  • Blair, J.M., Webber, M.A., Baylay, A.J., Ogbolu, D.O. and Piddock, L.J., 2015. Molecular mechanisms of antibiotic resistance. Nature reviews microbiology, 13(1), pp.42–51. [CrossRef] [PubMed] [Google Scholar]
  • Xu, J., Li, F., Li, C., Guo, X., Landersdorfer, C., Shen, H.H., Peleg, A.Y., Li, J., Imoto, S., Yao, J. and Akutsu, T., 2023. iAMPCN: a deep-learning approach for identifying antimicrobial peptides and their functional activities. Briefings in Bioinformatics, 24(4), p.bbad240. [CrossRef] [PubMed] [Google Scholar]
  • Magana, M., Pushpanathan, M., Santos, A.L., Leanse, L., Fernandez, M., Ioannidis, A., Giulianotti, M.A., Apidianakis, Y., Bradfute, S., Ferguson, A.L. and Cherkasov, A., 2020. The value of antimicrobial peptides in the age of resistance. The lancet infectious diseases, 20(9), pp.e216–e230. [CrossRef] [PubMed] [Google Scholar]
  • Osazee, F.O., Mokobia, K.E. and Ifijen, I.H., 2024. The urgent need for tungsten-based nanoparticles as antibacterial agents. Biomedical Materials & Devices, 2(2), pp.614–629. [CrossRef] [Google Scholar]
  • Ferrara, F., Capuozzo, M., Pasquinucci, R., Langella, R., Trama, U., Nava, E. and Zovi, A., 2024, May. Antibacterial agents and the fight against antibiotic resistance: A real-world evidence analysis of consumption and spending by an Italian healthcare company. In Annales Pharmaceutiques Françaises (Vol. 82, No. 3, pp. 545–552). Elsevier Masson. [CrossRef] [Google Scholar]
  • Brüssow, H., 2024. The antibiotic resistance crisis and the development of new antibiotics. Microbial Biotechnology, 17(7), p.e14510. [CrossRef] [PubMed] [Google Scholar]
  • Mulukutla, A., Shreshtha, R., Deb, V.K., Chatterjee, P., Jain, U. and Chauhan, N., 2024. Recent advances in antimicrobial peptide-based therapy. Bioorganic Chemistry, p.107151. [CrossRef] [PubMed] [Google Scholar]
  • Jimoh, M.A., Jimoh, M.O., Bello, M., Raimi, I.O., Okunlola, G.O., Mkhwanazi, N. and Laubscher, C.P., 2024. In vitro anti-HIV, cytotoxicity and nutritional analysis of Trianthema portulacastrum L.(Aizoaceae). BMC Complementary Medicine and Therapies, 24(1), p.35. [CrossRef] [PubMed] [Google Scholar]
  • Kubheka, M.X., Ndlovu, S.I. and Mkhwanazi, N.P., 2024. Anti-HIV Activity and Immunomodulatory Properties of Fractionated Crude Extracts of Alternaria alternata. Microorganisms, 12(6), p.1150. [CrossRef] [PubMed] [Google Scholar]
  • Halliwell, B., 2024. Understanding mechanisms of antioxidant action in health and disease. Nature Reviews Molecular Cell Biology, 25(1), pp.13–33. [CrossRef] [PubMed] [Google Scholar]
  • Pinilla-González, V., Rojas-Solé, C., Gómez-Hevia, F., GonzálezFernández, T., Cereceda-Cornejo, A., Chichiarelli, S., Saso, L. and Rodrigo, R., 2024. Tapping into Nature’s Arsenal: Harnessing the Potential of Natural Antioxidants for Human Health and Disease Prevention. Foods, 13(13), p.1999. [CrossRef] [PubMed] [Google Scholar]
  • Bajaj, S., Singh, S. and Sharma, P., 2024. Role of antioxidants in neutralizing oxidative stress. In Nutraceutical Fruits and Foods for Neurodegenerative Disorders (pp. 353–378). Academic Press. [CrossRef] [Google Scholar]
  • Scalese, G., Mosquillo, M.F., Pérez-Díaz, L. and Gambino, D., 2024. Biosynthesis of ergosterol as a relevant molecular target of metalbased antiparasitic and antifungal compounds. Coordination Chemistry Reviews, 503, p.215608. [CrossRef] [Google Scholar]
  • Chakraborty, S., Ghosh, S., Dalui, S. and Dey, A., 2024. A review on the anti-parasitic activity of ruthenium compounds. The Journal of Basic and Applied Zoology, 85(1), p.17. [CrossRef] [Google Scholar]
  • Orosco, D., Mendoza, A.R. and Meléndez, C.M., 2024. Exploring the Potential of Natural Products as Antiparasitic Agents for Neglected Tropical Diseases. Current Topics in Medicinal Chemistry, 24(2), pp.89108. [CrossRef] [PubMed] [Google Scholar]
  • Mendonça-Junior, F.J.B., 2024. Special Issue “Drug Discovery of Antiprotozoal Agents”. Pharmaceuticals, 17(2), p.176. [CrossRef] [PubMed] [Google Scholar]
  • Jooste, J., Legoabe, L.J., Ilbeigi, K., Caljon, G. and Beteck, R.M., 2024. Hydrazinated geraniol derivatives as potential broad‐spectrum antiprotozoal agents. Archiv der Pharmazie, p.e2400430. [CrossRef] [PubMed] [Google Scholar]
  • Abbas, H., Younus, M., Fareed, Z., Saleem, M.M., Jones, M.K., Raheemi, H., Ijaz, A. and Saleem, M.N., 2024. Antiprotozoal Resistance. In Antiparasitic Drug Resistance in Veterinary Practice (pp. 19–40). GB: CABI. [CrossRef] [Google Scholar]
  • Hagemann, C.L., Macedo, A.J. and Tasca, T., 2024. Therapeutic potential of antimicrobial peptides against pathogenic protozoa. Parasitology Research, 123(2), p.122. [CrossRef] [PubMed] [Google Scholar]
  • Jukič, M. and Bren, U., 2022. Machine learning in antibacterial drug design. Frontiers in Pharmacology, 13, p.864412. [CrossRef] [PubMed] [Google Scholar]
  • Ivanenkov, Y.A., Zhavoronkov, A., Yamidanov, R.S., Osterman, I.A., Sergiev, P.V., Aladinskiy, V.A., Aladinskaya, A.V., Terentiev, V.A., Veselov, M.S., Ayginin, A.A. and Kartsev, V.G., 2019. Identification of novel antibacterials using machine learning techniques. Frontiers in pharmacology, 10, p.913. [CrossRef] [PubMed] [Google Scholar]
  • Fjell, C.D., Jenssen, H., Hilpert, K., Cheung, W.A., Panté, N., Hancock, R.E. and Cherkasov, A., 2009. Identification of novel antibacterial peptides by chemoinformatics and machine learning. Journal of medicinal chemistry, 52(7), pp.2006–2015. [CrossRef] [PubMed] [Google Scholar]
  • Yang, X.G., Chen, D., Wang, M., Xue, Y. and Chen, Y.Z., 2009. Prediction of antibacterial compounds by machine learning approaches. Journal of computational chemistry, 30(8), pp.1202–1211. [CrossRef] [PubMed] [Google Scholar]
  • Lata, S., Sharma, B.K. and Raghava, G.P., 2007. Analysis and prediction of antibacterial peptides. BMC bioinformatics, 8, pp.1–10. [CrossRef] [PubMed] [Google Scholar]
  • Rosa, R.S., Santos, R.H., Brito, Á.Y. and Guimarães, K.S., 2014, July. Insights on prediction of patients’ response to anti-HIV therapies through machine learning. In 2014 International Joint Conference on Neural Networks (IJCNN) (pp. 3697–3704). IEEE. [Google Scholar]
  • Foglierini, M., Nortier, P., Schelling, R., Winiger, R.R., Jacquet, P., O’Dell, S., Demurtas, D., Mpina, M., Lweno, O., Muller, Y.D. and Petrovas, C., 2024. RAIN: machine learning-based identification for HIV-1 bNAbs. Nature Communications, 15(1), p.5339. [CrossRef] [PubMed] [Google Scholar]
  • Ge, R., Xia, Y., Jiang, M., Jia, G., Jing, X., Li, Y. and Cai, Y., 2024. HybAVPnet: A novel hybrid network architecture for antiviral peptides prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics. [Google Scholar]
  • Hesamzadeh, P., Seif, A., Mahmoudzadeh, K., Ganjali Koli, M., Mostafazadeh, A., Nayeri, K., Mirjafary, Z. and Saeidian, H., 2024. De novo antioxidant peptide design via machine learning and DFT studies. Scientific Reports, 14(1), p.6473. [CrossRef] [PubMed] [Google Scholar]
  • Zhang, Y., Bao, X., Zhu, Y., Dai, Z., Shen, Q. and Xue, Y., 2024. Advances in Machine Learning Screening of Food Bioactive Compounds. Trends in Food Science & Technology, p.104578. [CrossRef] [Google Scholar]
  • Chen, L., Hu, Z., Rong, Y. and Lou, B., 2024. Deep2Pep: A deep learning method in multi-label classification of bioactive peptide. Computational Biology and Chemistry, 109, p.108021. [CrossRef] [PubMed] [Google Scholar]
  • Zhang, R., Li, Y., Li, Y. and Zhang, H., Esm4ao: A Confident Learning and Protein Language Model Based Predictor for Antioxidative Peptides Screening. Available at SSRN 4825353. [Google Scholar]
  • Periwal, N., Arora, P., Thakur, A., Agrawal, L., Goyal, Y., Rathod, A.S., Anand, H.S., Kaur, B. and Sood, V., 2024. Antiprotozoal peptide prediction using machine learning with effective feature selection techniques. Heliyon. [Google Scholar]
  • Xu, J., Li, F., Leier, A., Xiang, D., Shen, H.H., Marquez Lago, T.T., Li, J., Yu, D.J. and Song, J., 2021. Comprehensive assessment of machine learning-based methods for predicting antimicrobial peptides. Briefings in bioinformatics, 22(5), p.bbab083. [CrossRef] [PubMed] [Google Scholar]
  • Capecchi, A., Cai, X., Personne, H., Köhler, T., van Delden, C. and Reymond, J.L., 2021. Machine learning designs non-hemolytic antimicrobial peptides. Chemical science, 12(26), pp.9221–9232. [CrossRef] [PubMed] [Google Scholar]
  • Van Oort, C.M., Ferrell, J.B., Remington, J.M., Wshah, S. and Li, J., 2021. AMPGAN v2: machine learning-guided design of antimicrobial peptides. Journal of chemical information and modeling, 61(5), pp.21982207. [CrossRef] [PubMed] [Google Scholar]
  • Wang, G., Li, X. and Wang, Z., 2016. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic acids research, 44(D1), pp.D1087–D1093. [CrossRef] [PubMed] [Google Scholar]
  • Jhong, J.H., Yao, L., Pang, Y., Li, Z., Chung, C.R., Wang, R., Li, S., Li, W., Luo, M., Ma, R. and Huang, Y., 2022. dbAMP 2.0: updated resource for antimicrobial peptides with an enhanced scanning method for genomic and proteomic data. Nucleic acids research, 50(D1), pp.D460–D470. [CrossRef] [PubMed] [Google Scholar]
  • Gupta, S., Sharma, A.K., Jaiswal, S.K. and Sharma, V.K., 2016. Prediction of biofilm inhibiting peptides: an in silico approach. Frontiers in Microbiology, 7, p.949. [PubMed] [Google Scholar]
  • Olsen, T.H., Yesiltas, B., Marin, F.I., Pertseva, M., García-Moreno, P.J., Gregersen, S., Overgaard, M.T., Jacobsen, C., Lund, O., Hansen, E.B. and Marcatili, P., 2020. AnOxPePred: using deep learning for the prediction of antioxidative properties of peptides. Scientific reports, 10(1), p.21471. [CrossRef] [PubMed] [Google Scholar]
  • Timmons, P.B. and Hewage, C.M., 2020. HAPPENN is a novel tool for hemolytic activity prediction for therapeutic peptides which employs neural networks. Scientific reports, 10(1), p.10869. [CrossRef] [PubMed] [Google Scholar]
  • Guo, D., Ren, S., Lu, S., Feng, Z., Tang, D., Liu, S., Zhou, L., Duan, N., Svyatkovskiy, A., Fu, S. and Tufano, M., 2020. Graphcodebert: Pretraining code representations with data flow. arXiv preprint arXiv:2009.08366. [Google Scholar]
  • Jiang, J., Ke, L., Chen, L., Dou, B., Zhu, Y., Liu, J., Zhang, B., Zhou, T. and Wei, G.W., 2024. Transformer technology in molecular science. Wiley Interdisciplinary Reviews: Computational Molecular Science, 14(4), p.e1725. [CrossRef] [Google Scholar]
  • Ying, C., Qi-Guang, M., Jia-Chen, L. and Lin, G., 2013. Advance and prospects of AdaBoost algorithm. Acta Automatica Sinica, 39(6), pp.745–758. [CrossRef] [Google Scholar]
  • Rigatti, S.J., 2017. Random forest. Journal of Insurance Medicine, 47(1), pp.31–39. [CrossRef] [Google Scholar]
  • Taud, H. and Mas, J.F., 2018. Multilayer perceptron (MLP). Geomatic approaches for modeling land change scenarios, pp.451–455. [CrossRef] [Google Scholar]
  • LaValley, Michael P. “Logistic regression.” Circulation 117, no. 18 (2008): 2395–2399. [CrossRef] [PubMed] [Google Scholar]
  • Sharaff, A. and Gupta, H., 2019. Extra-tree classifier with metaheuristics approach for email classification. In Advances in Computer Communication and Computational Sciences: Proceedings of IC4S 2018 (pp. 189–197). Springer Singapore. [Google Scholar]
  • Alexandropoulos, S.A.N., Aridas, C.K., Kotsiantis, S.B. and Vrahatis, M.N., 2019. Stacking strong ensembles of classifiers. In Artificial Intelligence Applications and Innovations: 15th IFIP WG 12.5 International Conference, AIAI 2019, Hersonissos, Crete, Greece, May 24–26, 2019, Proceedings 15 (pp. 545–556). Springer International Publishing. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.