Open Access
Issue |
BIO Web Conf.
Volume 167, 2025
5th International Conference on Smart and Innovative Agriculture (ICoSIA 2024)
|
|
---|---|---|
Article Number | 05003 | |
Number of page(s) | 8 | |
Section | Smart and Precision Farming | |
DOI | https://doi.org/10.1051/bioconf/202516705003 | |
Published online | 19 March 2025 |
- D. Abewoy, Impact of Coffee berry borer on Global Coffee Industry. International Journal of Novel Research in Engineering and Science. 9(1), 1–8 (2022) [Google Scholar]
- D, Lee, M.A. Johnson, L.F. Aristizabal, S. Shriner, C. Chan, S. Miyasaka, and M. Wall, Economic benefits from managing coffee berry borer (Hypothenemus hampei) in Hawaii. Insects 14(4), (2023). [Google Scholar]
- M. G. Venkatesha, and R. Kiran, Infestation Rate of the Coffee Berry Borer, Hypothenemus hampei (Ferrari), (Coleoptera: Curculionidae) in South India. Jurnal Proteksi Tanaman. 8(1), 1–11 (2024). [Google Scholar]
- M. A. Johnson, C.P. Ruiz-Diaz, N.C. Manoukis, and J.C. Verle Rodrigues, 2020. Coffee berry borer (Hypothenemus hampei), a global pest of coffee: Perspectives from historical and recent invasions, and future priorities, Insects. 11(12), 882 (2020). [CrossRef] [Google Scholar]
- J. Jaramillo, B. Torto, D. Mwenda, A. Troeger, C. Borgemeister, H.M. Poehling, & W. Francke, Coffee berry borer joins bark beetles in coffee klatch. PloS one. 8(9), e74277 (2013) [Google Scholar]
- R.H. Le Pelley, Pests of coffee, (Longmans, London, 1968) [Google Scholar]
- A.E. Bustillo, R. Cardenas, D. Villalba, P. Benavides, J. Orozco, F.J. Posada, manejo integrado de la broca del cafe' Hypothenemus hampei (Ferrari) en Colombia. (Cenicafe', Chinchina', Colombia, 1998) [Google Scholar]
- F. E. Vega, S.M. Brown, H. Chen, E. Shen, M.B. Nair, J.A. Ceja-Navarro, A. Pain, Draft genome of the most devastating insect pest of coffee worldwide: the coffee berry borer, Hypothenemus hampei. Scientific reports. 5(1), 12525 (2015) [Google Scholar]
- L. F. Aristizabal, M. Johnson, S. Shriner, R. Hollingsworth, N.C. Manoukis, R. Myers, S.P. Arthurs, Integrated pest management of coffee berry borer in Hawaii and Puerto Rico: Current status and prospects. Insects. 8(4), 123 (2017). [CrossRef] [Google Scholar]
- H. E. Walker, K.A. Lehman, M.M. Wall, M.S. Siderhurst, Analysis of volatile profiles of green Hawai'ian coffee beans damaged by the coffee berry borer (Hypothenemus hampei). Journal of the Science of Food and Agriculture. 99(4) (2019). [Google Scholar]
- A. E. Pereira, E.F. Vilela, R.S. Tinoco, J.O.G. de Lima, A.K. Fantine, E.G. Morais, C.F. Franca, Correlation between numbers captured and infestation levels of the coffee berry-borer, Hypothenemus hampei: A preliminary basis for an action threshold using baited traps. International Journal of Pest Management. 58(2), 183–190 (2012). [Google Scholar]
- M. A. Abawari, L. Lemecha Obsu, A. Shiferaw Melese, Optimal control analysis of coffee berry borer infestation in the presence of farmer's awareness. Applied Mathematics in Science and Engineering. 31(1), 2169684 (2023). [CrossRef] [Google Scholar]
- L. M. Constantino, Z.N. Gil, E.C. Montoya, P. Benavides, Coffee berry borer (Hypothenemus hampei) emergence from ground fruits across varying altitudes and climate cycles, and the effect on coffee tree infestation. Neotropical Entomology. 50(3), 374–387 (2021). [Google Scholar]
- F. Ribeyre, J. Avelino, Impact of field pests and diseases on coffee quality. Specialty Coffee: managing quality. 151–176 (2012). [Google Scholar]
- B. Girma, The Impact of Climate Change on Coffee Processing: A Review. Agriculture, Forestry and Fisheries. 12(4) 120–129 (2023). [Google Scholar]
- N. Córdoba, F.L. Moreno, C. Osorio, S. Velasquez. M. Fernandez-Alduenda, Y. Ruiz-Pardo, Specialty and regular coffee bean quality for cold and hot brewing: Evaluation of sensory profile and physicochemical characteristics. LWT Food, Science and Technology. 145 (2021). [Google Scholar]
- L. Nouri, K.T. Azari, M. Alaghmandan, Development of Algorithmic Applications in Architecture: A Review and Analysis of L-Systems. Bagh-e Nazar. 19, (2023). [Google Scholar]
- P. Prusinkiewicz, M. Cieslak, P. Ferraro, J. Hanan, Modeling plant development with L-systems. Mathematical modeling in plant biology. (2018). [Google Scholar]
- A. Lindenmayer, Mathematical models for cellular interactions in development II. Simple and branching filaments with two-sided inputs. Journal of Theoretical Biology. 18(3), 300–315(1968). [CrossRef] [Google Scholar]
- C.C. Napier, D.M. Cook, L. Armstrong, D. Diepeveen, A synthetic wheat L-system to accurately detect and visualise wheat head anomalies. Proceedings of the 3rd International Conference on Smart and Innovative Agriculture (ICoSIA 2022), 379–391 (2023). [Google Scholar]
- S. Kar, J. Adinarayana. Deep Learning and Reinforcement Learning Methods for Advancing Sustainable Agricultural and Natural Resource Management. In Harnessing Data Science for Sustainable Agriculture and Natural Resource Management. pp. 201–223. Singapore : Springer Nature Singapore, (2024). [Google Scholar]
- H. Maqbool, D.M. Cook, C.C. Napier, L. Armstrong, D. Diepeveen, H. Nyeete, Early Aesthetics Integration in Digital Twin Dashboards in Isolated Agriculture: Data Modelling and Remote Networks. In IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS), (2023) [Google Scholar]
- S. Manson, M. Campera, K. Hedger, N. Ahmad, E. Adinda, V. Nijman, Budiadi, M.A. Imron, G. Lukmandaru, K.A.I. Nekaris, The effectiveness of a biopesticide in the reduction of coffee berry borers in coffee plants. Crop Protection. 161 (2022) [Google Scholar]
- L. Jia, J. Zhang, S. Chen, Z. Hou, Fabric defect inspection based on lattice segmentation and lattice templates. Journal of the Franklin Institute. 355(15), 7764–7798 (2018). [CrossRef] [Google Scholar]
- L. Busin, N. Vandenbroucke, L. Macaire, Color spaces and image segmentation. Advances in imaging and electron physics. 151(1) (2008). [Google Scholar]
- D. Velasquez, A. Sánchez, S. Sarmiento, M. Toro, M. Maiza, B. Sierra, A method for detecting coffee leaf rust through wireless sensor networks, remote sensing, and deep learning: Case study of the Caturra variety in Colombia. Applied Sciences. 10(2) (2020). [Google Scholar]
- S. Vilchez-Mendoza, A. Romero-Gurdián, J. Avelino, F. DeClerck, P. Bommel, J. Betbeder, C. Cilas, L.B. Beilhe, Assessing the joint effects of landscape, farm features and crop management practices on berry damage in coffee plantations. Agriculture, Ecosystems Environment. 330 (2022). [Google Scholar]
- N.C. Bicho, A.E. Leitao, J.C. Ramalho, F.C. Lidon, Application of colour parameters for assessing the quality of Arabica and Robusta green coffee. Emirates Journal of Food and Agriculture. 26(1), 9–17 (2014). [Google Scholar]
- S. Ramadiana, D. Hapsoro, Y. Yusnita, Morphological variation among fifteen superior robusta coffee clones in Lampung Province, Indonesia. Biodiversitas. 19(4), 1475–1481 (2018). [Google Scholar]
- R. Rubiyo, S. Sudarsono, M.F. Anshori, N. Nurdebyandaru, Y.A. Dewi, M.R. Akbar. Determining kinship pattern of robusta and arabica coffee clones using multivariate analysis. Chilean Journal of Agricultural Research. 82(2), 276–284 (2022). [Google Scholar]
- X. Fu, Q. Ma, F. Yang, C. Zhang, X. Zhao, F. Chang, L. Han, Crop pest image recognition based on the improved ViT method. Information Processing in Agriculture. 11(2), 249–259 (2024). [CrossRef] [Google Scholar]
- W. Purnami, D. Liana, N.A. Simanjuntak, Identification of pests and diseases in coffee plants in the Manggarai Area-Flores, Indonesia. In ICEHHA 2022: Proceedings of the 2nd International Conference on Education, Humanities, Health and Agriculture, ICEHHA 2022, 21-22 October 2022, Ruteng, Flores, Indonesia. (2023) (p. 275). European Alliance for Innovation. [Google Scholar]
- W. Girsang, R. Purba, R. Rudiyantono, Intensitas serangan hama penggerek buah kopi (Hipothenemus hampei Ferr.) pada tingkat umur tanaman yang berbeda dan upaya pengendalian memanfaatkan atraktan. Journal TABARO Agriculture Science. 4(1), 27–34 (2020). [CrossRef] [Google Scholar]
- H.R. Segura, J.F. Barrera, H. Morales, A. Nazar, Farmers’ perceptions, knowledge, and management of coffee pests and diseases and their natural enemies in Chiapas, Mexico. Journal of economic entomology. 97(5), 1491–1499 (2004). [CrossRef] [Google Scholar]
- P.V. Azevedo de Paula, E.A. Pozza, L.A. Santos, E. Chaves, M.P. Maciel, J.C.A. Paula, Diagrammatic scales for assessing brown eye spot (Cercospora coffeicola) in red and yellow coffee cherries. Journal of Phytopathology. 164(10), 791–800 (2016). [CrossRef] [Google Scholar]
- F. Ribeyre, J. Avelino, Impact of field pests and diseases on coffee quality. Specialty coffee: managing quality. 151–176 (2012). [Google Scholar]
- B. Xin, S. Liu, M. Whitty, Three-dimensional reconstruction of Vitis vinifera (L.) cvs Pinot Noir and Merlot grape bunch frameworks using a restricted reconstruction grammar based on the stochastic L-system. Australian Journal of Grape and Wine Research. 26(3) 207–219 (2020). [CrossRef] [Google Scholar]
- L.E. de Oliveira Aparecido, G. de Souza Rolim, Models for simulating the frequency of pests and diseases of Coffea arabica L. International Journal of Biometeorology. 64, 1063–1084 (2020). [CrossRef] [PubMed] [Google Scholar]
- J.C. Rojas, A. Castillo, A. Virgen, Chemical cues used in host location by Phymastichus coffea, a parasitoid of coffee berry borer adults, Hypothenemus hampei. Biological Control. 37(2), 141–147 (2006). [Google Scholar]
- A. Sifaunajah, T. Hariono, M. Widya, A. Aris, P. Airlangga, S. Sufaidah, S. Improving Agricultural Extension Services Through Dashboard Agricultural Land Data. Primaadi and Sufaidah, Siti, Improving Agricultural Extension Services Through Dashboard Agricultural Land Data. (2020). [Google Scholar]
- B. Ayalew, K. Hylander, G. Adugna, B. Zewdie, F. Zignol, A.J. Tack, Impact of climate and management on coffee berry-disease and yield in coffee's native range. Basic and Applied Ecology. 76 (2024). [Google Scholar]
- M.A. Johnson, C.P. Ruiz-Diaz, N.C. Manoukis, J.C. Verle Rodrigues, Coffee berry borer (Hypothenemus liampei), a global pest of coffee: Perspectives from historical and recent invasions, and future priorities. Insects. 11(12) (2020). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.