Open Access
Issue |
BIO Web Conf.
Volume 167, 2025
5th International Conference on Smart and Innovative Agriculture (ICoSIA 2024)
|
|
---|---|---|
Article Number | 05004 | |
Number of page(s) | 8 | |
Section | Smart and Precision Farming | |
DOI | https://doi.org/10.1051/bioconf/202516705004 | |
Published online | 19 March 2025 |
- G. Avola, M. Distefano, A. Torrisi, E. Riggi, Precision agriculture and patented innovation: State of the art and current trends. World Pat. Inf. 76, 102262, (2024) doi.org/10.1016/j.wpi.2024.102262. [Google Scholar]
- B. Petrovic, R. Bumbálek, T. Zoubek, R. Kunes. L. Smutny. P. Bartos. Application of precision agriculture technologies in Central Europe-review. J. Agric. Food Res.. 15. 101048. (2024) doi.org/10.1016/j.jafr.2024.101048. [Google Scholar]
- M. Torky and A. E. Hassanein. Integrating blockchain and the internet of things in precision agriculture: Analysis. opportunities. and challenges. Comput. Electron. Agric.. 178. 105476 (2020) https://doi.org/10.1016/j.compag.2020.105476. [Google Scholar]
- E. Bwambale. F. K. Abagale. G. K. Anornu. Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: A review. Agric. Water Manag.. 260. 107324 (2022) https://doi.org/10.1016/j.agwat.2021.107324. [CrossRef] [Google Scholar]
- A. S. Rathor. S. Choudhury. A. Sharma. P. Nautiyal. G. Shah. Empowering vertical farming through IoT and AI-Driven technologies: A comprehensive review. Heliyon. 10. no. 15. e34998 (2024) https://doi.org/10.1016/j.heliyon.2024.e34998. [Google Scholar]
- M. Guesbaya. F. García-Mañas. H. Megherbi. F. Rodríguez. Real-time adaptation of a greenhouse microclimate model using an online parameter estimator based on a bat algorithm variant. Comput. Electron. Agric.. 192. 106627 (2022) https://doi.org/10.1016/j.compag.2021.106627. [Google Scholar]
- H. Tian. T. Wang. Y. Liu. X. Qiao. Y. Li. Computer vision technology in agricultural automation —A review. Inf. Process. Agric. 7. no. 1. 1–19 (2020) https://doi.org/10.1016/j.inpa.2019.09.006. [Google Scholar]
- X. Zhang. J. Xia. Z. Chen. J. Zhu. H. Wang. A nutrient optimization method for hydroponic lettuce based on multi-strategy improved grey wolf optimizer algorithm.” Comput. Electron. Agric. 224. 109167 (2024) https://doi.org/10.1016/j.compag.2024.109167. [Google Scholar]
- V. D. Nguyen et al.. “Noninvasive imaging technologies in plant phenotyping.” Trends Plant Sci.. vol. 27. no. 3. pp. 316–317. Mar. 2022. https://doi.org/10.1016/j.tplants.2021.06.009. [CrossRef] [Google Scholar]
- L. Li. Q. Zhang. D. Huang. A Review of Imaging Techniques for Plant Phenotyping. Sensors. 14. no. 11. 20078–20111 (2014). https://doi.org/10.3390/s141120078. [Google Scholar]
- J. C. Barbosa-Caro. M. M. Wudick. Revisiting plant electric signaling: Challenging an old phenomenon with novel discoveries. Curr. Opin. Plant Biol.. 79. 102528 (2024) https://doi.org/10.1016/j.pbi.2024.102528. [Google Scholar]
- J.-H. Li. Li.-F. Fan. D.-J. Zhao. Q. Zhou. J.-P. Yao. Z.-Yi Wang. L. Huang. Plant electrical signals: A multidisciplinary challenge. J. Plant Physiol., 261, 153418 (2021) https://doi.Org/10.1016/j.jplph.2021.153418. [CrossRef] [Google Scholar]
- F. Baluska, S. Mancuso, D. Volkmann, P. Barlow, The ‘root-brain’ hypothesis of Charles and Francis Darwin: Revival after more than 125 years. Plant Signal. Behav., 4, no. 12, pp. 1121-1127 (2009) https://doi.org/10.4161/psb.4.12.10574. [Google Scholar]
- S. Miguel-Tome, R. R. Llinas. Broadening the definition of a nervous system to better understand the evolution of plants and animals. Plant Signal. Behav., vol. 16, no. 10, p. 1927562, Oct. 2021, https://doi.org/10.1080/15592324.2021.1927562. [Google Scholar]
- M. U. Gul, A. Paul, M. S, and A. Chehri, Hydrotropism: Understanding the Impact of Water on Plant Movement and Adaptation. Water, 15, no. 3, 567 (2023) https://doi.org/10.3390/w15030567. [Google Scholar]
- F. Baluska and S. Mancuso, Root Apex Transition Zone As Oscillatory Zone. Front. Plant Sci. (2013), https://doi.org/10.3389/fpls.2013.00354. [Google Scholar]
- U. Kutschera, K. J. Niklas, Evolutionary plant physiology: Charles Darwin’s forgotten synthesis,” Naturwissenschaften, 96, no. 11, 1339–1354 (2009) https://doi.org/10.1007/s00114-009-0604-z. [Google Scholar]
- C. W. Whippo, R. P. Hangarter, The ‘sensational’ power of movement in plants: A Darwinian system for studying the evolution of behavior. Am. J. Bot., 96, no. 12, 2115–2127 (2009) https://doi.org/10.3732/ajb.0900220. [Google Scholar]
- M. Mudrilov, M. Ladeynova, M. Grinberg, I. Balalaeva, and V. Vodeneev, Electrical Signaling of Plants under Abiotic Stressors: Transmission of Stimulus-Specific Information. Int. J. Mol. Sci., 22, no. 19, 10715, (2021) https://doi.org/10.3390/ijms221910715. [Google Scholar]
- E. Sukhova, V. Sukhov, Electrical Signals, Plant Tolerance to Actions of Stressors, and Programmed Cell Death: Is Interaction Possible? Plants, 10, no. 8, p. 1704 (2021) https://doi.org/10.3390/plants10081704. [Google Scholar]
- C. Li, L. Yin, D. Chen, X. Tang, Threshold of Denoising Weak Electrical Signals in Plants from Daubechies Wavelet Transform, in 2013 International Conference on Computer Sciences and Applications, Wuhan, China: IEEE, Dec. 2013, pp. 600–603. https://doi.org/10.1109/CSA.2013.145. [CrossRef] [Google Scholar]
- C.-C. Sun, F.-C. Chan, A. Ahamad, Y.-H. Yao, Improved Natural Plant Electrophysiology Sensor Design for Phytosensing System. IEEE Trans. Instrum. Meas., 72, 1–10 (2023) https://doi.org/10.1109/TIM.2023.3289534. [Google Scholar]
- D. Tran, E. Najdenovska, F. Dutoit, C. Plummer, N. Wallbridge, M. Mazza, C. Camps, L. E. Raileanu., Advanced assessment of nutrient deficiencies in greenhouse withelectrophysiological signals. Hortic. Environ. Biotechnol., 65, no. 4, 567–580, (2024) http://doi.org/10.1007/s13580-023-00589-w. [Google Scholar]
- D. Tran, F. Dutoit, E. Najdenovska, N. Wallbridge, C. Plummer, M. Mazza, L. E. Raileanu, C. Camps, Electrophysiological assessment of plant status outside a Faraday cage using supervised machine learning. Sci. Rep., 9, no. 1, 17073 (2019) https://doi.org/10.1038/s41598-019-53675-4. [Google Scholar]
- E. Najdenovska, F. Dutoit. D. Tran, A. Rochat, B. Vu, M. Mazza, C. Camps, C. Plummer, N. Wallbridge, Laura E. Raileanu, Identifying General Stress in Commercial Tomatoes Based on Machine Learning Applied to Plant Electrophysiology. Appl. Sci., 11, no. 12, 5640 (2021) https://doi.org/10.3390/app11125640. [CrossRef] [Google Scholar]
- M. A. Grinberg, S. V. Gudkov, I. V. Balalaeva, E. Gromova, Y. Sinitsyna, V. Sukhov, V. Vodeneev, Effect of chronic p- radiation on long-distance electrical signals in wheat and their role in adaptation to heat stress Environ. Exp. Bot., 184, 104378 (2021) https://doi.org/10.1016/j.envexpbot.2021.104378. [Google Scholar]
- M. Mudrilov, M. Ladeynova, E. Berezina, M. Grinberg, A. Brilkina, V. Sukhov, V. Vodeneev., Mechanisms of specific systemic response in wheat plants under different locally acting heat stimuli. J. Plant Physiol. vol. 258-259, 153377, (2021) https://doi.org/10.1016/i.iplph,2021.153377. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.