Open Access
Issue
BIO Web Conf.
Volume 169, 2025
1st International Seminar on Food Science and Technology: “Harnessing Science and Technology for Safe and Quality Food” (ISoFST 2024)
Article Number 01005
Number of page(s) 9
Section Sustainable Food Processing and Engineering
DOI https://doi.org/10.1051/bioconf/202516901005
Published online 26 March 2025
  • J. Chen et al., “Effect of hydrocolloids on gel properties and protein secondary structure of silver carp surimi,” J. Sci. Food Agric., vol. 100, no. 5, pp. 2252–2260, 2020, doi: 10.1002/jsfa.10254. [Google Scholar]
  • B. Vardhanabhuti and S. Ikeda, “Isolation and characterization of hydrocolloids from monoi (Cissampelos pareira) leaves,” Food Hydrocoll., vol. 20, no. 6, pp. 885–891, Aug. 2006, doi: 10.1016/J.FOODHYD.2005.09.002. [Google Scholar]
  • M. Guidara et al., “Effect of extraction procedures on the chemical structure, antitumor and anticoagulant properties of ulvan from Ulva lactuca of Tunisia coast,” Carbohydr. Polym., vol. 253, p. 117283, Feb. 2021, doi: 10.1016/j.carbpol.2020.117283. [Google Scholar]
  • A. Carreira-Casais et al., “Benefits and Drawbacks of Ultrasound-Assisted Extraction for the Recovery of Bioactive Compounds from Marine Algae,” Int. J. Environ. Res. Public Heal. 2021, Vol. 18, Page 9153, vol. 18, no. 17, p. 9153, Aug. 2021, doi: 10.3390/IJERPH18179153. [Google Scholar]
  • M. Kazemi, M. Fathi, K. Jahanbin, M. Taghdir, and S. Abbaszadeh, “Optimization of ultrasonicassisted hot acidic solvent extraction of ulvan from Ulva intestinalis of the Persian Gulf: Evaluation of structural, techno-functional, and bioactivity properties,” Food Hydrocoll., vol. 142, p. 108837, Sep. 2023, doi: 10.1016/j.foodhyd.2023.108837. [Google Scholar]
  • W. Ramadhan, S. Dyah Hardiningtyas, R. Fariz Pari, and D. Sevica, “Ekstraksi Polisakarida Ulvan dari Rumput Laut Ulva lactuca Berbantu Gelombang Ultrasonik pada Suhu Rendah,” J. Pengolah. Has. Perikan. Indones., vol. 25, no. 1, pp. 132–142, Apr. 2022, doi: 10.17844/JPHPI.V25I1.40407. [Google Scholar]
  • S. Inoubli, M. D. Torres, and H. Domínguez, “Influence of Microwave hydrodiffusion and gravity (MHG) drying process on Ulva sp: Ulvan, molecular weight, rheology, and film development,” Lwt, vol. 214, no. November, p. 117025, 2024, doi: 10.1016/j.lwt.2024.117025. [Google Scholar]
  • Y. Yuan, X. Xu, C. Jing, P. Zou, C. Zhang, and Y. Li, “Microwave assisted hydrothermal extraction of polysaccharides from Ulva prolifera: Functional properties and bioactivities,” Carbohydr. Polym., vol. 181, pp. 902–910, Feb. 2018, doi: 10.1016/J.CARBPOL.2017.11.061. [Google Scholar]
  • Y. Yang, L. Wei, and J. Pei, “Application of Bayesian modelling to assess food quality & safety status and identify risky food in China market,” Food Control, vol. 100, no. January, pp. 111–116, 2019, doi: 10.1016/j.foodcont.2019.01.010. [Google Scholar]
  • P. Shao, M. Qin, L. Han, and P. Sun, “Rheology and characteristics of sulfated polysaccharides from chlorophytan seaweeds Ulva fasciata,” Carbohydr. Polym., vol. 113, pp. 365–372, Nov. 2014, doi: 10.1016/j.carbpol.2014.07.008. [Google Scholar]
  • H. Yaich et al., “Effect of extraction procedures on structural, thermal and antioxidant properties of ulvan from Ulva lactuca collected in Monastir coast,” Int. J. Biol. Macromol., vol. 17, 2017, [Online]. Available: https://orbi.uliege.be/handle/2268/201468 [Google Scholar]
  • S. Feng et al., “Optimization of Extraction Process, Structure Characterization, and Antioxidant Activity of Polysaccharides from Different Parts of Camellia oleifera Abel,” Foods, vol. 11, p. 3185, 2022, doi: https://doi.org/10.3390/foods11203185. [Google Scholar]
  • X. Shu, X. Liu, C. Fu, and Q. Liang, “Extraction, characterization and antitumor effect of the polysaccharides from star anise (Illicium verum Hook. f.),” J. Med. Plants Res., vol. 4, no. 24, pp. 2666–2673, 2010, doi: 10.5897/jmpr09.438. [Google Scholar]
  • J. Chen et al., “Physicochemical properties and anti-oxidation activities of ulvan from Ulva pertusa Kjellm,” Algal Res., vol. 55, p. 102269, May 2021, doi: https://doi.org/10.1016/j.algal.2021.102269. [Google Scholar]
  • R. Moreira, F. Chenlo, C. Silva, and M. D. Torres, “Rheological behaviour of aqueous methylcellulose systems: Effect of concentration, temperature and presence of tragacanth,” Lwt, vol. 84, pp. 764–770, 2017, doi: 10.1016/j.lwt.2017.06.050. [Google Scholar]
  • D. López-Barraza, A. Ortega-Ramos, E. Torregroza-Fuentes, S. E. Quintana, and L. A. García-Zapateiro, “Rheological and functional properties of hydrocolloids from pereskia bleo leaves,” Fluids, vol. 6, no. 10, 2021, doi: 10.3390/fluids6100349. [Google Scholar]
  • L. Qiao et al., “Rheological properties, gelling behavior and texture characteristics of polysaccharide from Enteromorpha prolifera,” Carbohydr. Polym., vol. 136, pp. 1307–1314, 2016, doi: 10.1016/j.carbpol.2015.10.030. [Google Scholar]
  • J. Wu et al., “Ultrasonic disruption effects on the extraction efficiency, characterization, and bioactivities of polysaccharides from Panax notoginseng flower,” Carbohydr. Polym., vol. 291, no. December 2021, p. 119535, 2022, doi: 10.1016/j.carbpol.2022.119535. [Google Scholar]
  • L. Wang et al., “Effect of Ultrasonic Treatment on the Physicochemical Properties of Bovine Plasma Protein-Carboxymethyl Cellulose Composite Gel,” Foods, vol. 13, no. 5, 2024, doi: 10.3390/foods13050732. [Google Scholar]
  • X. Wang, M. Majzoobi, and A. Farahnaky, “Ultrasound-assisted modification of functional properties and biological activity of biopolymers: A review,” Ultrason. Sonochem., vol. 65, no. December 2019, 2020, doi: 10.1016/j.ultsonch.2020.105057. [Google Scholar]
  • S. P. Gannasin, Y. Ramakrishnan, N. M. Adzahan, and K. Muhammad, “Functional and Preliminary Characterisation of Hydrocolloid from Tamarillo (Solanum betaceum Cav.) Puree,” Molecules, vol. 17, pp. 6869–6885, 2012, doi: 10.3390/molecules17066869. [PubMed] [Google Scholar]
  • H.-W. Yang, H. Da Dai, W. Huang, and T. Sombatngamwilai, “Formulations of dysphagia-friendly food matrices with calorie-dense starchy thickeners and their stability assessments Huai-Wen,” J. Food Meas. Charact., vol. 14, no. 2, pp. 1–14, 2020, doi: https://link.springer.com/article/10.1007/s11694-020-00549-3. [Google Scholar]
  • X. Yu et al., “Effect of ultrasonic treatment on the degradation and inhibition cancer cell lines of polysaccharides from Porphyra yezoensis,” Carbohydr. Polym., vol. 117, pp. 650–656, 2015, doi: 10.1016/j.carbpol.2014.09.086. [Google Scholar]
  • H. D. Goff and G. Q, “Handbook of Food Structure Development,” in Handbook of Food Structure Development, F. Spyropoulos, A. Lazidis, and I. Norton, Eds., Cambridge, UK: The Royal Society of Chemistry, 2019, pp. 1–28. doi: 10.1039/9781788016155. [Google Scholar]
  • S. Y. Seo, Y. R. Kang, Y. K. Lee, J. H. Lee, and Y. H. Chang, “Physicochemical, molecular, emulsifying and rheological characterizations of sage (Salvia splendens) seed gum,” Int. J. Biol. Macromol., vol. 115, pp. 1174–1182, 2018, doi: https://doi.org/10.1016/j.ijbiomac.2018.04.1730141-8130/©. [Google Scholar]
  • J. Wu, Y. Rong, Z. Wang, Y. Zhou, S. Wang, and B. Zhao, “Isolation and characterisation of sericin antifreeze peptides and molecular dynamics modelling of their ice-binding interaction,” Food Chem., vol. 174, pp. 621–629, 2015, doi: https://doi.org/10.1016/j.foodchem.2014.11.100. [Google Scholar]
  • M. Marcotte, A. R. T. Hoshahili, and H. S. Ramaswamy, “Rheological properties of selected hydrocolloids as a function of concentration and temperature,” Food Res. Int., vol. 34, no. 8, pp. 695–703, Jan. 2001, doi: 10.1016/S0963-9969(01)00091-6. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.