Open Access
Issue |
BIO Web Conf.
Volume 169, 2025
1st International Seminar on Food Science and Technology: “Harnessing Science and Technology for Safe and Quality Food” (ISoFST 2024)
|
|
---|---|---|
Article Number | 01006 | |
Number of page(s) | 7 | |
Section | Sustainable Food Processing and Engineering | |
DOI | https://doi.org/10.1051/bioconf/202516901006 | |
Published online | 26 March 2025 |
- Directorate General of Plantations Ministry of Agriculture, “Statistik Perkebunan Unggulan Nasional 2020-2022,” 2022. Accessed: Aug. 28, 2023. [Online]. Available: https://repository.pertanian.go.id/items/529921cc-7268-49f7-ae70-c44c74271a6f [Google Scholar]
- USDA, “Palm Oil Explorer.” Accessed: Aug. 05, 2023. [Online]. Available: https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=4243000 [Google Scholar]
- F. Fahma, S. Iwamoto, N. Hori, T. Iwata, and A. Takemura, Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB), Cellulose, vol. 17, no. 5, pp. 977–985 (2010) https://doi.org/10.1007/s10570-010-9436-4 [CrossRef] [Google Scholar]
- Z. Ibrahim, M. Ahmad, A. A. Aziz, R. Ramli, K. Hassan, and A. H. Alias, Properties of chemically treated oil palm empty fruit bunch (efb) fibres, J of Adv Rsc in Fluid Mech and Therm Sci, vol. 57, pp. 57–68 (2019) [Google Scholar]
- Q. Ji, C. Zhou, Z. Li, I. D. Boateng, and X. Liu, Is nanocellulose a good substitute for nonrenewable raw materials? a comprehensive review of the state of the art, preparations,and industrial applications, Ind Crops Prod, vol. 202, p. 117093, (2023). https://doi.org/10.1016/j.indcrop.2023.117093 [Google Scholar]
- F. Zhang, R. Shen, N. Li, X. Yang, and D. Lin, Nanocellulose: An amazing nanomaterial with diverse applications in food science, Carbohydr Polym, vol. 304 (2023). https://doi.org/10.1016/j.carbpol.2022.120497 [Google Scholar]
- S. Roy and J. W. Rhim, Gelatin/agar-based functional film integrated with Pickering emulsion of clove essential oil stabilized with nanocellulose for active packaging applications, Colloids Surf A Physicochem Eng Asp, vol. 627 (2021). https://doi.org/10.1016/j.colsurfa.2021.127220 [Google Scholar]
- M. L. Foo, C. W. Ooi, K. W. Tan, and I. M. L. Chew, Preparation of black cumin seed oil Pickering nanoemulsion with enhanced stability and antioxidant potential using nanocrystalline cellulose from oil palm empty fruit bunch, Chemosphere, vol. 287 (2022). https://doi.org/10.1016/j.chemosphere.2021.132108 [Google Scholar]
- M. Amrani, S. Pourshamohammad, M. Tabibiazar, H. Hamishehkar, and M. Mahmoudzadeh, Antimicrobial activity and stability of Satureja khuzestanica essential oil pickering emulsions stabilized by starch nanocrystals and bacterial cellulose nanofibers, Food Biosci, vol. 55, p. 103016 (2023). https://doi.org/10.1016/j.fbio.2023.103016 [Google Scholar]
- H. Zou, B. Lin, C. Xu, M. Lin, and W. Zhan, Preparation and characterization of individual chitin nanofibers with high stability from chitin gels by low-intensity ultrasonication for antibacterial finishing, Cellulose, vol. 25, no. 2, pp. 999–1010 (2018). https://doi.org/10.1007/s10570-017-1634-x [CrossRef] [Google Scholar]
- W. Chen, H. Yu, Y. Liu, P. Chen, M. Zhang, and Y. Hai, Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments, Carbohydr Polym, vol. 83, no. 4, pp. 1804–1811 (2011). https://doi.org/10.1016/j.carbpol.2010.10.040 [Google Scholar]
- J. Wang et al., Preparation of nanocellulose in high yield via chemi-mechanical synergy, Carbohydr Polym, vol. 251 (2021). https://doi.org/10.1016/j.carbpol.2020.117094 [Google Scholar]
- N. I. Abdo, Y. M. Tufik, and S. M. Abobakr, A comparison of nano-celluloses prepared with various terms of time and sulfuric acid concentration from bagasse derived cellulose: Physicochemical characteristics and process optimization, Current Research in Green and Sustainable Chemistry, vol. 6 (2023). https://doi.org/10.1016/j.crgsc.2023.100365 [Google Scholar]
- M. S. Lopes, M. E. Carneiro, A. V. Bento, D. C. Potulski, and G. I. B. De Muniz, Production and characterization of nanofibrillated cellulose powder, Sci For, vol. 49, no. 129, (2021). https://doi.org/10.18671/scifor.v49n129.04 [Google Scholar]
- X. Liu, H. Sun, T. Mu, M. L. Fauconnier, and M. Li, Preparation of cellulose nanofibers from potato residues by ultrasonication combined with high-pressure homogenization, Food Chem, vol. 413 (2023) https://doi.org/10.1016/j.foodchem.2023.135675 [Google Scholar]
- H. Chutia and C. Lata Mahanta, Properties of starch nanoparticle obtained by ultrasonication and high pressure homogenization for developing carotenoids-enriched powder and Pickering nanoemulsion, Innovative Food Science and Emerging Technologies, vol. 74, no. 102822 (2021). https://doi.org/10.1016/j.ifset.2021.102822 [Google Scholar]
- M. A. F. Supian, K. N. M. Amin, S. S. Jamari, and S. Mohamad, Production of cellulose nanofiber (CNF) from empty fruit bunch (EFB) via mechanical method, J Environ Chem Eng, vol. 8, no. 1, (2020). https://doi.org/10.1016/j.jece.2019.103024 [Google Scholar]
- Q. Ji, X. Yu, A. E. G. A. Yagoub, L. Chen, and C. Zhou, Efficient cleavage of strong hydrogen bonds in sugarcane bagasse by ternary acidic deep eutectic solvent and ultrasonication to facile fabrication of cellulose nanofibers, Cellulose, vol. 28, no. 10, pp. 6159–6182 (2021). https://doi.org/10.1007/s10570-021-03876-w [CrossRef] [Google Scholar]
- F. Fahma et al., Nanocellulose-based fibres derived from palm oil by-products and their in vitro biocompatibility analysis, Journal of the Textile Institute, vol. 111, no. 9, pp. 1354–1363 (2020). https://doi.org/10.1080/00405000.2019.1694353 [Google Scholar]
- X. Li, J. Li, Y. Kuang, S. Guo, L. Mo, and Y. Ni, Stabilization of Pickering emulsions with cellulose nanofibers derived from oil palm fruit bunch, Cellulose, vol. 27, no. 2, pp. 839–851 (2020) https://doi.org/10.1007/s10570-019-02803-4 [CrossRef] [Google Scholar]
- M. Poletto, H. L. Ornaghi Júnior, and A. J. Zattera, Native cellulose: Structure, characterization and thermal properties, Materials, vol. 7, no. 9, pp. 6105–6119 (2014). https://doi.org/10.3390/ma7096105 [Google Scholar]
- Y. Peng, Y. Han, and D. J. Gardner, Spray drying cellulose nanofibrils: effect of drying process parameters on particle morphology and size distribution, Wood and fiber science, vol. 44, no. 4, pp. 448–461, (2012) [Google Scholar]
- W. Li, J. Yue, and S. Liu, Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly(vinyl alcohol) composites, Ultrason Sonochem, vol. 19, no. 3, pp. 479–485 (2012). https://doi.org/10.1016/j.ultsonch.2011.11.007 [Google Scholar]
- K. Zhang, Y. Su, and H. Xiao, Preparation and Characterization of Nanofibrillated Cellulose from Waste Sugarcane Bagasse by Mechanical Force, Bioresources, vol. 15, no. 3, pp. 6636–6647, (2020). [Google Scholar]
- M. R. Furtado, V. M. da Matta, C. W. P. Carvalho, W. L. E. Magalhães, A. L. Rossi, and R. V. Tonon, Characterization of spray-dried nanofibrillated cellulose and effect of different homogenization methods on the stability and rheological properties of the reconstituted suspension, Cellulose, vol. 28, no. 1, pp. 207–221 (2021). https://doi.org/10.1007/s10570-020-03516-9 [CrossRef] [Google Scholar]
- S. S. Lal and S. T. Mhaske, TEMPO-oxidized cellulose nanofiber/kafirin protein thin film crosslinked by Maillard reaction, Cellulose, vol. 26, no. 10, pp. 6099–6118 (2019). https://doi.org/10.1007/s10570-019-02509-7 [CrossRef] [Google Scholar]
- M. L. Nelson, Relation of Certain Infrared Bands to Cellulose Crystallinity and Crystal Lattice Type. Part I. Spectra of Lattice Types I, II, III and of Amorphous Cellulose, J of Polym Sci. Vol 8, pp 1311–1324 (1964). [Google Scholar]
- A. Kljun, T. A. S. Benians, F. Goubet, F. Meulewaeter, J. P. Knox, and R. S. Blackburn, Comparative analysis of crystallinity changes in cellulose I polymers using ATR-FTIR, X-ray diffraction, and carbohydrate-binding module probes, Biomacromolecules, vol. 12, no. 11, pp. 4121–4126, (2011). https://doi.org/10.1021/bm201176m [PubMed] [Google Scholar]
- D. Koutsianitis et al., Properties of ultrasound extracted bicomponent lignocellulose thin films, Ultrason Sonochem, vol. 23, pp. 148–155, (2015). https://doi.org/10.1016/j.ultsonch.2014.10.014 [Google Scholar]
- R. Rotaru, M. E. Fortună, E. Ungureanu, and C. O. Brezuleanu, Effects of Ultrasonication in Water and Isopropyl Alcohol on HighCrystalline Cellulose: A Fourier Transform Infrared Spectrometry and X-ray Diffraction Investigation, Polymers (Basel), vol. 16, no. 16 (2024). https://doi.org/10.3390/polym16162363 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.