Open Access
Issue |
BIO Web Conf.
Volume 169, 2025
1st International Seminar on Food Science and Technology: “Harnessing Science and Technology for Safe and Quality Food” (ISoFST 2024)
|
|
---|---|---|
Article Number | 02005 | |
Number of page(s) | 5 | |
Section | Food Microbiology and Safety | |
DOI | https://doi.org/10.1051/bioconf/202516902005 | |
Published online | 26 March 2025 |
- T. Kobayashi, M. Kajiwara, M. Wahyuni, T. Kitakado, N-H. Sato, C. Imada, E. Watanabe, Isolation and characterization of halophilic lactic acid bacteria isolated from “terasi” shrimp paste: A traditional fermented seafood product in Indonesia, J. Gen. App. Microbiol., 49, 279–286 (2003) [Google Scholar]
- R. Murwani, Supriyadi, Subagio, A. Trianto, Ambariyanto, Isolation and identification of thermophilic and mesophilic proteolytic bacteria from shrimp paste ’Terasi.’ AIP Conference Proceedings 1699 (2015) [Google Scholar]
- H.J. Kim, M.J. Kim, T.L. Turner, B.S. Kim, K.M. Song, S.H. Yi and M.K. Lee, Pyrosequencing analysis of microbiota reveals that lactic acid bacteria are dominant in Korean flat fish fermented food, gajami-sikhae. Biosci Biotechnol Biochem., 78, 1611e8 (2014) [Google Scholar]
- H.W. Lee, Y.J. Choi, I.M. Hwang, S.W. Hong, M.A. Lee, Relationship between chemical characteristics and bacterial community of a Korean salted-fermented anchovy sauce, Myeolchi-Aekjeot. LWT Food Sci Technol. 73, 251–58 (2016). doi: 10.1016/j.lwt.2016.06.007 [Google Scholar]
- J.P. Tamang, D.H. Shin, D.J. Jung, S.W. Chae, Functional properties of microorganisms in fermented foods. Fron Microbiol. 7(APR) (2016). doi: 10.3389/fmicb.2016.00578 [Google Scholar]
- E. Chukeatirote, Comparative phylogeny of the Bacillaceae species related to shrimp paste products. Environ Exp Biol. 14, 23–26 (2016). doi: 10.22364/eeb.14.04 [Google Scholar]
- B. Sobhi, M. Noranizan, S.A. Karim, A. Rahman R, J. Bakar, Z. Ghazali, Microbial and quality attributes of thermally processed chili shrimp paste. Int Food Res J. 19, 4, 1705–12 (2012) [Google Scholar]
- I.S. Surono, A. Hosono, Microflora and their enzyme profile in ’terasi’ starter. Biosci Biotechnol Biochem. 58, 6, 1167–69 (1994) [Google Scholar]
- M.B. Rao, A. Tankasale, M. Ghatge, A. Deshpande, Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62, 3 (1998) [Google Scholar]
- W. Bains, Biotechnology from A to Z (Oxford University Press, 1998) [Google Scholar]
- T. Godfrey, S. West, Industrial enzymology, 2nd ed (Mcmillan, New York, 1997) [Google Scholar]
- S. Maqsood, K. Manheem, A. Gani, A. Abushelaibi, Degradation of myofibrillar, sarcoplasmic and connective tissue proteins by plant proteolytic enzymes and their impact on camel meat tenderness. J Food Sci Technol 55, 9, 3427–3438 (2018) [Google Scholar]
- B. Gerelt B, Y. Ikeuchi, A. Suzuki, Meat tenderization by proteolytic enzymes after osmotic dehydration. Meat Sci 56, 311–318 (2000) [PubMed] [Google Scholar]
- G. Zhao, M. Zhou, H. Zhao, X. Chen, B. Xie, X. Zhang, H. He, B. Zhou, Y. Zhang, Tenderization effect of cold-adapted collagenolytic protease MCP-01 on beef meat at low temperature and its mechanism. Food Chem 134, 4,1738–1744 (2012) [Google Scholar]
- M. Singh, S.K.S. Patel, V.C. Kalia, Bacillus subtilis as potential producer for polyhydroxyalkanoates. Microb Cell Fact 8, 38 (2009) [PubMed] [Google Scholar]
- C. Qihe, H. Guoqing, J. Yingchun, N. Hui, Effects of elastase from a Bacillus strain on the tenderization of beef meat, Food Chemistry 98, 624–629 (2006) [Google Scholar]
- K. J.C. Bureros, I. Erlinda, Dizon, K.A.C. Israel, O.D. Abanto, F. Z. Tambalo, Physicochemical and sensory properties of carabeef treated with Bacillus subtilis (Ehrenberg) Cohn protease as meat tenderizer, J Food Sci Technol 57, 1, 310–318 (2020). doi.org/10.1007/s13197-019-04062-4 [Google Scholar]
- AMSA, Research guidelines for cookery, sensory evaluation, and instrumental tenderness measurements of meat. (American Meat Science Association, Champaign, IL, 2015) [Google Scholar]
- R.J. Beattie, S.J. Bell, L.J. Farmer, B.W. Moss, D. Patterson, Preliminary investigation of the application of Raman spectroscopy to the prediction of the sensory quality of beef silverside. Meat Sci 66, 4, 903–913 (2004) [PubMed] [Google Scholar]
- N. Arfarita, Isolasi dan identifikasi bakteri penghasil protease yang di skrining dari terasi, El Hayah, 4, 3 (2015) [Google Scholar]
- A.E. Susanti, Suharti, Roswanira A.W., Naharotul Ch., Shindy T.A.P., Isolation and screening of proteolytic bacteria from Sidoarjo shrimp paste as protease source to extract the collagen from milkfish scales (Chanos chanos). Jurnal Teknologi (Sciences & Engineering) 84, 1, 211–218 (2022) [Google Scholar]
- D.M. Wulf, J.K. Page, T.R. Schwotzer, G.R. Dunlap, Final report to National Cattlemen’s Beef Association: using measurements of muscle color/pH/water-holding capacity to augment the current USDA beef carcass quality grading standards and improve the accuracy and precision of sorting carcasses into palatability groups. (The Ohio State University, Columbus, OH, 1998). [Google Scholar]
- S. Sorapukdee, W. Samritphol, P. Sangsawad, and P. Tangwatcharin, Application of collagenolytic proteases from Bacillus subtilis B13 and Bacillus siamensis S6 for tenderizing goat meat during wet aging. Food Sci. Anim. Resour. March 44, 2, 430–442 (2024). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.