Open Access
Issue |
BIO Web Conf.
Volume 170, 2025
71st International Scientific Conference “FOOD SCIENCE, ENGINEERING AND TECHNOLOGY – 2024”
|
|
---|---|---|
Article Number | 03006 | |
Number of page(s) | 8 | |
Section | Food Process Engineering | |
DOI | https://doi.org/10.1051/bioconf/202517003006 | |
Published online | 01 April 2025 |
- A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, E. Matykina, Pitting corrosion behaviour of austenitic stainless steels – combining effects of Mn and Mo additions, Corros. Sci. 50 (2008) 1796–1806. [Google Scholar]
- A.C. Lloyd, J.J. Noel, S. McIntyre, D.W. Shoesmith, Cr, Mo and W alloying additions in Ni and their effect on passivity, Electrochim. Acta 49 (2004) 3015–3027. [Google Scholar]
- G. Frankel, G. Thornton, S. Street, T. Rayment, D. Williams, et al., Localised corrosion: general discussion, Faraday Discuss. 180 (2015) 381–414. [Google Scholar]
- H. Ogawa, H. Omata, I. Itoh, H. Okada, Auger- electron spectroscopic and electrochemical analysis of effect of alloying elements on passivation behavior of stainless-steels, Corrosion 34 (1978) 52–60. [Google Scholar]
- I. Olefjord, B.O. Elfstrom, The composition of the surface during passivation of stainless-steels, Corrosion 38 (1982) 46–52. [Google Scholar]
- I. Olefjord, Passive state of stainless-steels, Mater. Sci. Eng. 42 (1980) 161–171. [Google Scholar]
- Y.T. Xu, B. Zhang, X.X. Wei, B. Wu, Y.J. Wang, X.L. Ma, Improving pitting resistance of Mo- containing stainless steels via chloride-assisted stabilization of the passive film, Corrosion Science 227 (2024), https://doi.org/10.1016/j.corsci.2023.111787. [Google Scholar]
- Zhendong S., The influence of Cr and Mo on the formation of the passivation film on the surface of ferritic stainless steel, Materials Today Communications 38 (2024), https://doi.org/10.1016/j.mtcomm.2024.108221. [Google Scholar]
- F. Wang, Z. Guo, Insitu growth of durable superhydrophobic Mg-Al layered double hydroxides nanoplatelets on aluminum alloys for corrosion resistance, J. Alloy. Compd. 767 (2018) 382–391, https://doi.org/10.1016/j.jallcom.2018.07.086. [Google Scholar]
- J. Li, F. Du, Y. Zhao, S. Zhao, Two–step fabrication of superhydrophobic surfaces with anti–adhesion, Opt. Laser Technol. 113 (2019) 273–280, https://doi.org/10.1016/j.optlastec.2018.12.045. [Google Scholar]
- J. Song, W. Xu, X. Liu, Z. Wei, Fabrication of superhydrophobic Cu surfaces on Al substrates via a facile chemical deposition process, Mater. Lett. 87 (2012) 43–46, https://doi.org/10.1016/j.matlet.2012.07.077. [Google Scholar]
- J.D. Brassard, D.K. Sarkar, J. Perron, A.A. Hayet, D. Melot, Nano-micro structured superhydrophobic zinc coating on steel for prevention of corrosion and ice adhesion, J. Colloid Interface Sci. 447 (2015) 240–247, https://doi.org/10.1016/j.jcis.2014.11.076. [Google Scholar]
- J.H. Kim, A. Mirzaei, H.W. Kim, Facile fabrication of superhydrophobic surfaces from austenitic stainless steel (AISI 304) by chemical etching, Appl. Surf. Sci. 439 (2018) 598–604, https://doi.org/10.1016/j.apsusc.2017.12.211. [Google Scholar]
- L. Zhu, Y. Liu, Z. Li, L. Zhou, Y. Li, Microstructure and properties of Cu-Ti-Ni composite coatings on gray cast iron fabricated by laser cladding, Opt. Laser Technol. 122 (2020) 105879, https://doi.org/10.1016/j.optlastec.2019.105879. [Google Scholar]
- M. Ma, Y. Mao, M. Gupta, K.K. Gleason, Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition, Macromolecules 38 (23) (2005) 9742–9748, https://doi.org/10.1021/ma0511189. [CrossRef] [Google Scholar]
- S. Pan, N. Wang, D. Xiong, Y. Deng, Fabrication of superhydrophobic coating via spraying method and its applications in anti-icing and anti- corrosion, Appl. Surf. Sci. 389 (2016) 547–553, https://doi.org/10.1016/j.apsusc.2016.07.138. [Google Scholar]
- S.L. Zheng, C. Li, Q. Fu, M. Li, W. Hu, Q. Wang, M.P. Du, X.C. Liu, Z. Chen, Fabrication of self- cleaning superhydrophobic surface on aluminum alloys with excellent corrosion resistance, Surf. Coat. Technol. 276 (2015) 341–348, https://doi.org/10.1016/j.surfcoat.2015.07.002. [Google Scholar]
- Y.H. Fan, C.Z. Li, Z.J. Chen, H. Chen, Study on fabrication of the superhydrophobic sol-gel films based on copper wafer and its anti-corrosive properties, Appl. Surf. Sci. 258 (17) (2012) 6531–6536, https://doi.org/10.1016/j.apsusc.2012.03.072. [Google Scholar]
- A. Dunn, T.J. Dunn, J. Li, R.W. Kay, J. Stringer, P.J. Smith, Laser textured surface gradients, Appl. Surf. Sci. 371 (2016) 583–589, https://doi.org/10.1016/j.apsusc.2016.03.054. [Google Scholar]
- F. Wang, Z. Guo, Insitu growth of durable superhydrophobic Mg-Al layered double hydroxides nanoplatelets on aluminum alloys for corrosion resistance, J. Alloy. Compd. 767 (2018) 382–391, https://doi.org/10.1016/j.jallcom.2018.07.086. [Google Scholar]
- L. Zhang, N. Lin, J. Zou, X. Lin, Z. Liu, S. Yuan, Y. Yu, Z. Wang, Q. Zeng, W. Chen, L. Tian, L. Qin, R. Xie, B. Li, Z. Wang, B. Tang, Y. Wu, Super-hydrophobicity and corrosion resistance of laser surface textured AISI 304 stainless steel decorated with Hexadecyltrimethoxysilane (HDTMS), Optics and Laser Technology 127 (2020), 2020, https://doi.org/10.1016/j.optlastec.2020.106146. [Google Scholar]
- M. Rafieazad, J. Jaffer, C. Cui, X. Duan, Nanosecond laser fabrication of hydrophobic stainless steel surfaces: The impact on microstructure and corrosion resistance, Materials 11 (9) (2018) 1577, https://doi.org/10.3390/ma11091577. [Google Scholar]
- N. Gupta, S. Sasikala, H.C. Barshilia, Corrosion study of superhydrophobic magnesium alloy AZ31 surfaces prepared by wet chemical etching process, Nanosci. Nanotechnol. Lett. 4 (8) (2012) 757–765, https://doi.org/10.1166/nnl.2012.1425. [Google Scholar]
- Y. Cai, W. Chang, X. Luo, A.M. Sousa, K.H.A. Lau, Superhydrophobic structures on 316L stainless steel surfaces machined by nanosecond pulsed laser, Precis. Eng. 52 (2018) 266–275, https://doi.org/10.1016/j.precisioneng.2018.01.004 [Google Scholar]
- Y. Song, C. Wang, X. Dong, K. Yin, F. Zhang, Z. Xie, Controllable superhydrophobic aluminum surfaces with tunable adhesion fabricated by femtosecond laser, Opt. Laser Technol. 102 (2018) 25–31, https://doi.org/10.1016/j.optlastec.2017.12.024. [Google Scholar]
- Y. Fang, G. Sun, Q. Cong, G.H. Chen, L.Q. Ren, Effects of methanol on wettability of the non- smooth surface on butterfly wing, J. Bion. Eng. 5 (2) (2008) 127–133, https://doi.org/10.1016/S1672-6529(08)60016-5. [Google Scholar]
- B. He, N.A. Patankar, J. Lee, Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces, Langmuir 19 (12) (2003) 4999–5003, https://doi.org/10.1021/la0268348. [Google Scholar]
- M. Callies, D. Quéré, On water repellency, Soft Matter 1 (1) (2005) 55–61, https://doi.org/10.1039/B501657F. [Google Scholar]
- G. Whyman, E. Bormashenko, T. Stein, The rigorous derivation of Young, Cassie-Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon, Chem. Phys. Lett. 450 (4) (2008) 355–359, https://doi.org/10.1016/j.cplett.2007.11.033. [Google Scholar]
- G. Angelova, Study and improvement of hygienic design of technological equipment in food processing industry, Ph. D. thesis, University Of Food Technologies Plovdiv, Technical faculty, department of Machines and Apparatus in Food- processing industry (2023) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.