Open Access
Issue |
BIO Web Conf.
Volume 177, 2025
14th International Symposium of Indonesian Society for Microbiology (ISISM 2024)
|
|
---|---|---|
Article Number | 07003 | |
Number of page(s) | 15 | |
Section | Microbial Metabolites and Bioactivity | |
DOI | https://doi.org/10.1051/bioconf/202517707003 | |
Published online | 22 May 2025 |
- N. Cokrowati, M. Junaidi, R.I. Affandi, M. Sumsanto, N. Muahiddah, I.D. Anggraini, S. Marno, Y. Asri, S. Dwiyanti, S.Y. Lumbessy, W. Latifah, R.A. Fikri, The distribution, habitat characteristics, and bioenergy potential of Sargassum sp. in Indonesia. Int. J. Des. Nat. Ecodynamics. 19, 2049 (2024). https://doi.org/10.18280/iidne.190621 [CrossRef] [Google Scholar]
- R.R. Remya, A.V. Samrot, S.S. Kumar, V. Mohanavel, A. Karthick, V.K. Chinnaiyan, D. Umapathy, M. Muhibbullah, Bioactive potential of brown algae. Adsorpt. Sci. Technol. 2022, 9104835 (2022). https://doi.org/10.1155/2022/9104835 [CrossRef] [Google Scholar]
- S.L. Holdt, S. Kraan, Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 23, 543 (2011). https://doi.org/10.1007/s10811-010-9632-5 [CrossRef] [Google Scholar]
- K.S. Kumar, K. Ganesan, P.V.S. Rao, Antioxidant potential of solvent extracts of Kappaphycus alvarezii (Doty) Doty - An edible seaweed. Food Chem. 107, 289 (2008). https://doi.org/10.1016/i.foodchem.2007.08.016 [CrossRef] [Google Scholar]
- S.U. Kadam, B.K. Tiwari, C.P. O Donnell, Extraction, structure and biofunctional activities of laminarin from brown algae. Int. J. Food Sci. Technol. 50, 24 (2015). https://doi.org/10.1111/iifs. 12692 [CrossRef] [Google Scholar]
- A. Dobrincic, S. Balbino, Z. Zoric, S. Pedisic, D.B. Kovacevic, I. Elez Garofulic, V. Dragovic Uzelac, Advanced technologies for the extraction of marine brown algal polysaccharides. Mar. Drugs. 18, 168 (2020). https://doi.org/10.3390/md18030168 [CrossRef] [Google Scholar]
- M.T. Ale, J.D. Mikkelsen, A.S. Meyer, Important determinants for fucoidan bioactivity: A critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Mar. Drugs. 9, 2106 (2011). https://doi.org/10.3390/md9102106 [CrossRef] [Google Scholar]
- L.R.G. Kumar, P.T. Paul, K.K. Anas, C.S. Tejpal, N.S. Chatterjee, T.K. Anupama, S. Mathew, C.N. Ravishankar, Phlorotannins-bioactivity and extraction perspectives. J. Appl. Phycol. 34, 2173 (2022). https://doi.org/10.1007/s10811-022-02749-4 [CrossRef] [PubMed] [Google Scholar]
- D.A. Esquivel-Hernandez, I.P. Ibarra Garza, J. Rodriguez Rodriguez, S.P. Cuéllar Bermüdez, M.d.J. Rostro Alanis, G.S. Aleman Nava, J.S. Garcia Pérez, R. Parra Saldivar, Green extraction technologies for high-value metabolites from algae: A review. Biofuels Bioprod. Biorefining. 11, 215 (2017). https://doi.org/10.1002/bbb. 1735 [CrossRef] [Google Scholar]
- A. Pérez-Alva, A.J. Macintosh, D.K. Baigts-Allende, R. Garcia-Torres, M.M. Ramirez-Rodrigues, Fermentation of algae to enhance their bioactive activity: A review. Algal Res. 64, 102684 (2022). https://doi.org/10.1016/j.algal.2022.102684 [CrossRef] [Google Scholar]
- C.P. Sreena, D. Sebastian, Augmented cellulase production by Bacillus subtilis strain MU S1 using different statistical experimental designs. J. Genet. Eng. Biotechnol. 16, 9 (2018). https://doi.org/10.1016/j.jgeb.2017.12.005 [CrossRef] [Google Scholar]
- B.-H. Lee, B.-K. Kim, Y.-J. Lee, C.-H. Chung, J.-W. Lee, Industrial scale of optimization for the production of carboxymethylcellulase from rice bran by a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzyme Microb. Technol. 46, 38 (2010). https://doi.org/10.1016/j.enzmictec.2009.07.009 [CrossRef] [Google Scholar]
- S.-H. Eom, Y.-M. Kang, J.-H. Park, D.-U. Yu, E.-T. Jeong, M.-S. Lee, Y.-M. Kim, Enhancement of polyphenol content and antioxidant activity of brown alga Eisenia bicyclis extract by microbial fermentation. Fish. Aquat. Sci. 14, 192 (2011). https://doi.org/10.5657/FAS.2011.0192 [Google Scholar]
- S. Santas., H. Duman, S. Karav, Nutritional and functional aspects of fermented algae. Int. J. Food Sci. Technol. 59, 5270 (2024). https://doi.org/10.1111/ijfs. 17297 [CrossRef] [Google Scholar]
- F. Shahidi, P. Ambigaipalan, Novel functional food ingredients from marine sources. Curr. Opin. Food Sci. 2, 123 (2015). https://doi.org/10.1016/j.cofs.2014.12.009 [CrossRef] [Google Scholar]
- L.R. Lynd, P.J. Weimer, W.H. van Zyl, I.S. Pretorius, Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66, 506 (2002). https://doi.org/10.1128/mmbr.66.3.506-577.2002 [CrossRef] [PubMed] [Google Scholar]
- B.O. De Veras, Y.Q. Dos Santos, K.M. Diniz, G.S.C. Carelli, E.A. Dos Santos, Screening of protease, cellulase, amylase and xylanase from the salt-tolerant and thermostable marine Bacillus subtilis strain SR60. F1000Res. 7, 1704 (2018). https://doi.org/10.12688/f1000research.16542.1 [CrossRef] [Google Scholar]
- M. Dumitru, N. Lefter, L. Idriceanu, M. Habeanu, Evaluation of enzymatic potentialities of Bacillus subtilis using as substrate different animal raw materials feed. Sci. Pap. Anim. Sci. Biotechnol. 55, 118 (2022) [Google Scholar]
- Y.-J. Lee, B.-K. Kim, B.-H. Lee, K.-I. Jo, N.-K. Lee, C.-H. Chung, Y.-C. Lee, J.-W. Lee, Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresour. Technol. 99, 378 (2008). https://doi.org/10.1016/j.biortech.2006.12.013 [CrossRef] [Google Scholar]
- Z.P. Yi-Heng, L.R. Lynd, Regulation of cellulase synthesis in batch and continuous cultures of Clostridium thermocellum. J. Bacteriol. 187, 99 (2005). https://doi.org/10.1128/jb.187.1.99-106.2005 [CrossRef] [PubMed] [Google Scholar]
- E.E. Chukwu, F.O. Nwaokorie, A.O. Coker, M.J. Avila-Campos, F.T. Ogunsola, 16S rRNA gene sequencing: A practical approach to confirming the identity of food borne bacteria. Ife J. Sci. 21, 13 (2019). https://doi.org/10.4314/iis.v21i3.2 [CrossRef] [Google Scholar]
- Z. Wang, Y. Zheng, X. Zhou, X. Wang, X. Liu, Q. Wang, R. Zhao, M. Gao, Z. Li, Y. Feng, Y. Xu, N. Li, M. Xu, Q. Sun, Q. Wang, J. Yang, L. An, Effect of Lactobacillus fermentation on the structural feature, physicochemical property, and bioactivity of plant and fungal polysaccharides: A review. Trends Food Sci. Technol. 148, 104492 (2024). https://doi.org/10.1016/j.tifs.2024.104492 [CrossRef] [Google Scholar]
- J. Nie, X. Fu, L. Wang, J. Xu, X. Gao, A systematic review of fermented Saccharina japonica: Fermentation conditions, metabolites, potential health benefits and mechanisms. Trends Food Sci. Technol. 123, 15 (2022). https://doi.org/10.1016/j.tifs.2022.03.001 [CrossRef] [Google Scholar]
- H. Herdian, L. Istiqomah, E. Damayanti, A.E. Suryani, A.S. Anggraeni, N. Rosyada, A. Susilowati, Isolation of cellulolytic lactic-acid bacteria from mentok (Anas moschata) gastro-intestinal tract. Trop. Anim. Sci. J. 41, 200 (2018). https://doi.org/10.5398/tasi.2018.4L3.200 [CrossRef] [Google Scholar]
- M. Faizah, T. Ardyati, S. Suharjono, Isolation and identification of indigenous cellulolytic bacteria from sago pith waste at Palopo, South Sulawesi, Indonesia. J. Exp. Life Sci. 10, 132 (2020). https://doi.org/10.21776/ub.iels.2020.010.02.09 [CrossRef] [Google Scholar]
- Y.W. Choi, I.J. Hodgkiss, K.D. Hyde, Enzyme production by endophytes of Brucea javanica. J. Agric. Technol. 1, 55 (2005) [Google Scholar]
- K. Grata, Determining cellulolytic activity of microorganisms. Didact. Ecol. Metrol. 25, 133 (2020). https://doi.org/10.2478/cdem-2020-0010 [Google Scholar]
- R. Buxton, Blood agar plates and hemolysis protocols, available at: https://www.asm.org/getattachment/7ec0de2b-bb16-4f6e-ba07-2aea25a43e76/protocol-2885.pdf (2005) [Google Scholar]
- I.S. Devi, Y.D. Jatmiko, Selection of potential lactic acid bacteria from fermented Sumbawa mare's milk as starter cultures. Malays. J. Microbiol. 17, 11 (2021). https://doi.org/10.21161/mim.190691 [Google Scholar]
- J. Owusu-Kwarteng, D. Agyei, F. Akabanda, R.A. Atuna, F.K. Amagloh, Plant-based alkaline fermented foods as sustainable sources of nutrients and health-promoting bioactive compounds. Front. Sustain. Food Syst. 6, 885328 (2022). https://doi.org/10.3389/fsufs.2022.885328 [CrossRef] [Google Scholar]
- M. Uchida, T. Miyoshi, Algal fermentation—The seed for a new fermentation industry of foods and related products. Jpn. Agric. Res. Q. JARQ. 47, 53 (2013). https://doi.org/10.6090/iarq.47.53 [CrossRef] [Google Scholar]
- S. Suhaeni, A. Syakur, Isolasi dan identifikasi bakteri asam laktat dangke asal Kabupaten Enrekang Sulawesi Selatan. Biog. J. Ilm. Biol. 4, 79 (2016). https://doi.org/10.24252/bio.v4i2.2511 [Google Scholar]
- P. Kumar, A. Verma, S.S. Sundharam, A.K. Ojha, S. Krishnamurthi, Exploring diversity and polymer degrading potential of epiphytic bacteria isolated from marine macroalgae. microorganisms. 10, 2513 (2022). https://doi.org/10.3390/microorganisms10122513 [CrossRef] [Google Scholar]
- Y.-L. Liang, Z. Zhang, M. Wu, Y. Wu, J.-X. Feng, Isolation, screening, and identification of cellulolytic bacteria from natural reserves in the subtropical region of China and optimization of cellulase production by Paenibacillus terrae ME27-1. BioMed Res. Int. 2014, 512497 (2014). https://doi.org/10.1155/2014/512497 [Google Scholar]
- M. Mulyasari, I. Melati, M.T.D. Sunarno, Isolasi, seleksi, dan identifikasi bakteri selulolitik dari rumput laut Turbinaria sp. dan Sargassum sp. sebagai kandidat pendegradasi serat kasar pakan ikan. J. Ris. Akuakultur. 10, 51 (2015). https://doi.org/10.15578/ira.10.L2015.51-60 [CrossRef] [Google Scholar]
- L.O. Sumarlin, D. Mulyadi, Suryatna, Y. Asmara, Identifikasi potensi enzim lipase dan selulase pada sampah kulit buah hasil fermentasi. J. Ilmu Pertan. Indones. 18, 159 (2013). [Google Scholar]
- S.I. Ramadhani, T. Ardyati, O. Sjofjan, Screening of cellulolytic bacteria from sugarcane waste (Bagasse) and optimization of cellulase activity as animal feed. J. Trop. Life Sci. 13, 607 (2023). https://doi.org/10.11594/itls. 13.03.19 [CrossRef] [Google Scholar]
- H.-T.V. Lin, W.-J. Lu, G.-J. Tsai, C.-T. Chou, H.-I. Hsiao, P.-A. Hwang, Enhanced antiinflammatory activity of brown seaweed Laminaria japonica by fermentation using Bacillus subtilis. Process Biochem. 51, 1945 (2016). https://doi.org/10.1016/i.procbio.2016.08.024 [CrossRef] [Google Scholar]
- X. Pan, X. Chen, X. Su, Y. Feng, Y. Tao, Z. Dong, Involvement of SpoVG in hemolysis caused by Bacillus subtilis. Biochem. Biophys. Res. Commun. 443, 899 (2014). https://doi.org/10.1016/i.bbrc.2013.12.069 [CrossRef] [Google Scholar]
- T. Bamba, R. Aoki, Y. Hori, S. Ishikawa, K.-i. Yoshida, N. Taoka, S. Kobayashi, H. Yasueda, A. Kondo, T. Hasunuma, High-throughput evaluation of hemolytic activity through precise measurement of colony and hemolytic zone sizes of engineered Bacillus subtilis on blood agar. Biol. Methods Protoc. 9, bpae044 (2024). https://doi.org/10.1093/biomethods/bpae044 [CrossRef] [Google Scholar]
- S.G. Lee, H.C. Chang, Assessment of Bacillus subtilis SN7 as a starter culture for Cheonggukiang, a Korean traditional fermented soybean food, and its capability to control Bacillus cereus in Cheonggukjang. Food Control. 73, 946 (2017). https://doi.org/10.1016/i.foodcont.2016.10.015 [CrossRef] [Google Scholar]
- R. Shahzad, A. Shehzad, S. Bilal, I.-J. Lee, Bacillus amyloliquefaciens RWL-1 as a new potential strain for augmenting biochemical and nutritional composition of fermented soybean. Molecules. 25, 2346 (2020). https://doi.org/10.3390/molecules25102346 [CrossRef] [Google Scholar]
- W. Yang, F. Meng, J. Peng, P. Han, F. Fang, L. Ma, B. Cao, Isolation and identification of a cellulolytic bacterium from the Tibetan pig's intestine and investigation of its cellulase production. Electron. J. Biotechnol. 17, 262 (2014). https://doi.org/10.1016/i.eibt.2014.08.002 [CrossRef] [Google Scholar]
- W. Wizna, R. Rusfidra, R. Amizar, R. Andika, M. Haikal, Z. Zurmiati, The effect of fermentation of leftover food from restaurants and hotels with Bacillus amyloliquefaciens on total colony count of Bacillus sp. and nutrition content of leftover food. Adv. Anim. Vet. Sci. 11, 1451 (2023). https://doi.org/10.17582/iournal.aavs/2023/1L9.1451.1456 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.